A short-circuited coil is placed in a time-varying magnetic field. Electrical power is dissipated due to the current induced in the coil. If the number of turns was to be quadrupled and the wire radius halved, the electrical power dissipated would be:
A) Halved
B) The same
C) Doubled
D) Quadrupled
Answer
Verified
116.4k+ views
Hint: The emf induced in a coil when placed in a time-varying magnetic field depends on the number of turns in the coil and the area of the coil. We will use this relation to determine the electric power in the coil.
Formula used: In this solution, we will use the following formula:
Power dissipated in a circuit $P = \dfrac{{{E^2}}}{R}$ where $E$ is the emf and $R$ is the resistance
Emf induced due to changing flux: $E = - \dfrac{{d\phi }}{{dt}} = - \dfrac{{d(B.A)}}{{dt}}$ where $B$ is the magnetic field and $A$ is the area.
Complete step by step answer:
The power dissipated in a circuit is calculated as
$P = \dfrac{{{E^2}}}{R}$
Now the emf induced in the coil when placed in a time-varying magnetic field is calculated as
\[E = nA\dfrac{{dB}}{{dt}}\] where $n$ is the number of turns, $A$ is the area of the coil, $B$ is the magnetic field.
The resistance of the wire will depend on the length of the wire and the area according to the relation of resistance and resistivity as $R = \rho \dfrac{l}{A}$.
Now the area of the wire will be $A = \pi {r^2}$. So we can write $R \propto \dfrac{l}{{{r^2}}}$.
The varying terms in the above discussion will be the number of turns in the coil and the area of the wire forming the coil.
Hence the power will be proportional to
$P = \dfrac{{{E^2}}}{R} \propto \dfrac{{{n^2}}}{{l/{r^2}}}$
Since the number of turns is quadrupled and the radius of the wire is halved, we can take the ratio of the new and the old power as
$\dfrac{{{P_2}}}{{{P_1}}} = \dfrac{{n_2^2}}{{n_1^2}} \times \dfrac{{r_2^2}}{{r_1^2}} \times \dfrac{{{l_1}}}{{{l_2}}}$
Now since the number of turns is quadrupled, we would need more wire so the new length of the wire will also be ${l_2} = 4{l_1}$ and hence the new power will be
$\dfrac{{{P_2}}}{{{P_1}}} = {\left( {\dfrac{4}{1}} \right)^2} \times {\left( {\dfrac{1}{2}} \right)^2} \times \left( {\dfrac{1}{4}} \right)$
Which gives us
${P_2} = {P_1}$
Hence the power will remain the same so option (B) is the correct choice.
Note: In the question, we’ve been given that the radius of the wire itself is halved and not the area of the coil so it will affect the resistance of the wire. This is because there is no external resistance in the wire but we are considering the resistance of the wire itself. Also, when the number of turns is quadrupled, we must not forget to account for the increase in net resistance due to more length of wire being required.
Formula used: In this solution, we will use the following formula:
Power dissipated in a circuit $P = \dfrac{{{E^2}}}{R}$ where $E$ is the emf and $R$ is the resistance
Emf induced due to changing flux: $E = - \dfrac{{d\phi }}{{dt}} = - \dfrac{{d(B.A)}}{{dt}}$ where $B$ is the magnetic field and $A$ is the area.
Complete step by step answer:
The power dissipated in a circuit is calculated as
$P = \dfrac{{{E^2}}}{R}$
Now the emf induced in the coil when placed in a time-varying magnetic field is calculated as
\[E = nA\dfrac{{dB}}{{dt}}\] where $n$ is the number of turns, $A$ is the area of the coil, $B$ is the magnetic field.
The resistance of the wire will depend on the length of the wire and the area according to the relation of resistance and resistivity as $R = \rho \dfrac{l}{A}$.
Now the area of the wire will be $A = \pi {r^2}$. So we can write $R \propto \dfrac{l}{{{r^2}}}$.
The varying terms in the above discussion will be the number of turns in the coil and the area of the wire forming the coil.
Hence the power will be proportional to
$P = \dfrac{{{E^2}}}{R} \propto \dfrac{{{n^2}}}{{l/{r^2}}}$
Since the number of turns is quadrupled and the radius of the wire is halved, we can take the ratio of the new and the old power as
$\dfrac{{{P_2}}}{{{P_1}}} = \dfrac{{n_2^2}}{{n_1^2}} \times \dfrac{{r_2^2}}{{r_1^2}} \times \dfrac{{{l_1}}}{{{l_2}}}$
Now since the number of turns is quadrupled, we would need more wire so the new length of the wire will also be ${l_2} = 4{l_1}$ and hence the new power will be
$\dfrac{{{P_2}}}{{{P_1}}} = {\left( {\dfrac{4}{1}} \right)^2} \times {\left( {\dfrac{1}{2}} \right)^2} \times \left( {\dfrac{1}{4}} \right)$
Which gives us
${P_2} = {P_1}$
Hence the power will remain the same so option (B) is the correct choice.
Note: In the question, we’ve been given that the radius of the wire itself is halved and not the area of the coil so it will affect the resistance of the wire. This is because there is no external resistance in the wire but we are considering the resistance of the wire itself. Also, when the number of turns is quadrupled, we must not forget to account for the increase in net resistance due to more length of wire being required.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Charging and Discharging of Capacitor
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Physics Average Value and RMS Value JEE Main 2025
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment