
A square loop of a side ‘a’ is placed at ‘a’ distance away from a long wire carrying a current ${I_1}$. If the loop carries as current ${I_2}$ as shown in figure. Then the nature of the force and its amount is:

$\left( A \right)$ \[\dfrac{{{\mu _0}{I_1}{I_2}}}{{2\pi a}}\], attractive
$\left( B \right)$ \[\dfrac{{{\mu _0}{I_1}{I_2}}}{{4\pi }}\], attractive
$\left( C \right)$ \[\dfrac{{{\mu _0}{I_1}{I_2}}}{{4\pi }}\], repulsive
$\left( D \right)$ \[\dfrac{{{\mu _0}{I_1}{I_2}}}{{4\pi a}}\], repulsive
Answer
133.5k+ views
Hint: The concept of the Left-hand rule can be used to solve this problem. When a current-carrying conductor/wire is placed in a magnetic field, a force is exerted on the wire.
Hence Fleming gave a simple rule to determine the direction of force acting on a current-carrying conductor/wire placed in a magnetic field. This can be used to calculate the force of nature.
Complete step by step answer:
If the direction of electric currents flowing in two parallel straight conductors is the same then they will attract each other.
If the direction of electric currents flowing two parallel straight conductors are opposite then they repel each other.
In this question, current $({I_1})$ produces a magnetic field around it which at any point on current $({I_2})$carrying wire is,
${B_1} = \dfrac{{{\mu _0}{I_1}}}{{2\pi a}}$ Directed inwards perpendicular to planes or wires
So current $({I_2})$ carrying wire then experiences a force due to its magnetic field which on its length $l$ given by,
$\Rightarrow F = {I_2}l{B_1}\sin {90^ \circ }$
$\Rightarrow F = {I_2}l \times \dfrac{{{\mu _0}{I_1}{I_2}}}{{2\pi a}}$
Or,\[\] $F = \dfrac{{{\mu _0}{I_1}{I_2}}}{{2\pi a}}l$
So force per unit length than the two wires exert on each other is,
$\Rightarrow f = \dfrac{F}{L}$
Hence \[f = \dfrac{{{\mu _0}{I_1}{I_2}}}{{2\pi a}}\]
The answer will be $\left( A \right),$ thus nullifying other options.
Note: The strong force of nature is considered as the most powerful force. The electric, weak, and gravitational forces are followed in decreasing order.
Despite its strength, because of its exceedingly small range, the strong force does not manifest itself in the macroscopic universe.
When a current-carrying wire is placed in a magnetic field of another current-carrying wire, it experiences a magnetic force.
The direction of the force depends on the direction of the magnetic field as well as the current and is perpendicular to it.
Hence Fleming gave a simple rule to determine the direction of force acting on a current-carrying conductor/wire placed in a magnetic field. This can be used to calculate the force of nature.
Complete step by step answer:
If the direction of electric currents flowing in two parallel straight conductors is the same then they will attract each other.
If the direction of electric currents flowing two parallel straight conductors are opposite then they repel each other.
In this question, current $({I_1})$ produces a magnetic field around it which at any point on current $({I_2})$carrying wire is,
${B_1} = \dfrac{{{\mu _0}{I_1}}}{{2\pi a}}$ Directed inwards perpendicular to planes or wires
So current $({I_2})$ carrying wire then experiences a force due to its magnetic field which on its length $l$ given by,
$\Rightarrow F = {I_2}l{B_1}\sin {90^ \circ }$
$\Rightarrow F = {I_2}l \times \dfrac{{{\mu _0}{I_1}{I_2}}}{{2\pi a}}$
Or,\[\] $F = \dfrac{{{\mu _0}{I_1}{I_2}}}{{2\pi a}}l$
So force per unit length than the two wires exert on each other is,
$\Rightarrow f = \dfrac{F}{L}$
Hence \[f = \dfrac{{{\mu _0}{I_1}{I_2}}}{{2\pi a}}\]
The answer will be $\left( A \right),$ thus nullifying other options.
Note: The strong force of nature is considered as the most powerful force. The electric, weak, and gravitational forces are followed in decreasing order.
Despite its strength, because of its exceedingly small range, the strong force does not manifest itself in the macroscopic universe.
When a current-carrying wire is placed in a magnetic field of another current-carrying wire, it experiences a magnetic force.
The direction of the force depends on the direction of the magnetic field as well as the current and is perpendicular to it.
Recently Updated Pages
Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 11th Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

Current Loop as Magnetic Dipole and Its Derivation for JEE
