
A toroid has a mean radius $R$ equal to $\dfrac{{20}}{\pi }cm$, and a total of $400$ turns of wire carrying a current of $2.0A$. An aluminium ring at a temperature $280K$ inside the toroid provides the core. If the magnetization $I$ is $4.8 \times {10^{ - 2}}A{m^{ - 1}}$, the susceptibility of aluminium at $280K$ is.
Answer
133.5k+ views
Hint: First we need to calculate the number of turns of the wire per unit length. Then we can find the magnetic intensity by multiplying the number of turns per unit length with the current in the wire. The susceptibility will be given by magnetization divided by the magnetic intensity.
Formula Used In this solution we will be using the following formula,
$n = \dfrac{N}{L}$
where $n$ is the number of turns per unit length
$N$ is the total number of turns, and $L$ is the length of the toroid.
$H = ni$
where $H$ is the magnetic intensity and $i$ is the current
and $\chi = \dfrac{I}{H}$
where $\chi $ is the susceptibility and $I$ is the magnetization.
Complete step by step answer:
In the question we are given a toroid of radius of $\dfrac{{20}}{\pi }cm$. So the whole length of the toroid will be the perimeter of this circle.
So the length will be, $L = 2\pi \times \dfrac{{20}}{\pi }$
Cancelling the $\pi $ we get, \[L = 2 \times 20 = 40cm\], that is, \[L = 40 \times {10^{ - 2}}m\]
Now the total number of turns on the toroid is given by, $N = 400$
So the number of turns per unit length will be the total number of turns by the length. This is given as,
$n = \dfrac{N}{L}$
Now substituting the values we get,
$\Rightarrow n = \dfrac{{400}}{{40 \times {{10}^{ - 2}}}}$
This gives us on calculating,
$\Rightarrow n = 10 \times {10^{ - 2}}/m$
The magnetic intensity inside the core will be $H = ni$
In the question we are given the current in the wire as, $i = 2.0A$
So substituting the value of $n$ and $i$ in the formula for the magnetic intensity we get,
$\Rightarrow H = 10 \times {10^{ - 2}} \times 2.0$
So on calculating we get,
$\Rightarrow H = 2 \times {10^{ - 2}}A/m$
The magnetization of aluminium is given as $I = 4.8 \times {10^{ - 2}}A{m^{ - 1}}$. So using this magnetization and magnetic intensity, we can find the susceptibility of the material by the formula,
$\chi = \dfrac{I}{H}$
Substituting we get,
$\Rightarrow \chi = \dfrac{{4.8 \times {{10}^{ - 2}}A/m}}{{2 \times {{10}^{ - 2}}A/m}}$
On calculating we get,
$\Rightarrow \chi = \dfrac{{4.8}}{2}$
Therefore, the susceptibility is given as, $\chi = 2.4$.
Note: The susceptibility of a material is the amount by which a material will become magnetised when it is placed in a magnetic field. It is given by the ratio of magnetisation and magnetic field intensity. The materials having susceptibility more than 0 are paramagnetic and the ones having susceptibility less than 0 are diamagnetic.
Formula Used In this solution we will be using the following formula,
$n = \dfrac{N}{L}$
where $n$ is the number of turns per unit length
$N$ is the total number of turns, and $L$ is the length of the toroid.
$H = ni$
where $H$ is the magnetic intensity and $i$ is the current
and $\chi = \dfrac{I}{H}$
where $\chi $ is the susceptibility and $I$ is the magnetization.
Complete step by step answer:
In the question we are given a toroid of radius of $\dfrac{{20}}{\pi }cm$. So the whole length of the toroid will be the perimeter of this circle.
So the length will be, $L = 2\pi \times \dfrac{{20}}{\pi }$
Cancelling the $\pi $ we get, \[L = 2 \times 20 = 40cm\], that is, \[L = 40 \times {10^{ - 2}}m\]
Now the total number of turns on the toroid is given by, $N = 400$
So the number of turns per unit length will be the total number of turns by the length. This is given as,
$n = \dfrac{N}{L}$
Now substituting the values we get,
$\Rightarrow n = \dfrac{{400}}{{40 \times {{10}^{ - 2}}}}$
This gives us on calculating,
$\Rightarrow n = 10 \times {10^{ - 2}}/m$
The magnetic intensity inside the core will be $H = ni$
In the question we are given the current in the wire as, $i = 2.0A$
So substituting the value of $n$ and $i$ in the formula for the magnetic intensity we get,
$\Rightarrow H = 10 \times {10^{ - 2}} \times 2.0$
So on calculating we get,
$\Rightarrow H = 2 \times {10^{ - 2}}A/m$
The magnetization of aluminium is given as $I = 4.8 \times {10^{ - 2}}A{m^{ - 1}}$. So using this magnetization and magnetic intensity, we can find the susceptibility of the material by the formula,
$\chi = \dfrac{I}{H}$
Substituting we get,
$\Rightarrow \chi = \dfrac{{4.8 \times {{10}^{ - 2}}A/m}}{{2 \times {{10}^{ - 2}}A/m}}$
On calculating we get,
$\Rightarrow \chi = \dfrac{{4.8}}{2}$
Therefore, the susceptibility is given as, $\chi = 2.4$.
Note: The susceptibility of a material is the amount by which a material will become magnetised when it is placed in a magnetic field. It is given by the ratio of magnetisation and magnetic field intensity. The materials having susceptibility more than 0 are paramagnetic and the ones having susceptibility less than 0 are diamagnetic.
Recently Updated Pages
Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 11th Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Sir C V Raman won the Nobel Prize in which year A 1928 class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

JEE Advanced 2024 Syllabus Weightage

Current Loop as Magnetic Dipole and Its Derivation for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
