Answer
Verified
108.9k+ views
Hint When the wire is slid along the rails, an e.m.f. is developed in it. This difference in potential causes the capacitor to store a charge. The rate of change of this charge with respect to time gives the current flowing through the capacitor. This can be used to calculate the force on the wire and the net force is divided by m to give the value of acceleration.
Complete step by step answer:
The movement of the conductor perpendicular to a magnetic field produces an e.m.f. in it.
This e.m.f is given by-
$\varepsilon = Bvl$
Where B is the intensity of the Magnetic field.
v is the velocity of the wire
And l is the length of the wire.
This movement causes a flow of charge and this charge is stored in the capacitor.
Charge stored in a capacitor is given by-
$Q = CV$
Here V is the potential difference, which is equal to the produced e.m.f. $\varepsilon $.
Putting the value of $\varepsilon $here, we have-
$Q = C(Bvl)$
The rate of flow of charge is known as current, it can be obtained by differentiating the charge with respect to time.
Therefore,
$i = \dfrac{{dQ}}{{dt}} = BCl\left( {\dfrac{{dv}}{{dt}}} \right)$
The term $\dfrac{{dv}}{{dt}}$ is the acceleration of the wire, which can be represented by a therefore the current flow in the wire can be written as-
$i = BCla$
The same current also passes in the wire, so magnetic force $\left( {{F_b}} \right)$ can be given by-
${F_b} = Bil$
${F_b} = B(BCla)l$
${F_b} = {B^2}C{l^2}a$
This makes the total forces acting on the wire two. On balancing the net force can be given by-
${F_{net}} = F - {F_b}$
$ma = F - {B^2}{l^2}Ca$
On rearranging,
$F = a(m + {B^2}{l^2}C)$
Therefore the acceleration is given by-
$a = \dfrac{F}{{m + {B^2}{l^2}C}}$
Hence, option (D) is correct.
Note: The currents in both wires are assumed to be equal because there is a mention about no losses in the question, generally inductance has very less amount of losses but there is always a loss associated with a device.
Complete step by step answer:
The movement of the conductor perpendicular to a magnetic field produces an e.m.f. in it.
This e.m.f is given by-
$\varepsilon = Bvl$
Where B is the intensity of the Magnetic field.
v is the velocity of the wire
And l is the length of the wire.
This movement causes a flow of charge and this charge is stored in the capacitor.
Charge stored in a capacitor is given by-
$Q = CV$
Here V is the potential difference, which is equal to the produced e.m.f. $\varepsilon $.
Putting the value of $\varepsilon $here, we have-
$Q = C(Bvl)$
The rate of flow of charge is known as current, it can be obtained by differentiating the charge with respect to time.
Therefore,
$i = \dfrac{{dQ}}{{dt}} = BCl\left( {\dfrac{{dv}}{{dt}}} \right)$
The term $\dfrac{{dv}}{{dt}}$ is the acceleration of the wire, which can be represented by a therefore the current flow in the wire can be written as-
$i = BCla$
The same current also passes in the wire, so magnetic force $\left( {{F_b}} \right)$ can be given by-
${F_b} = Bil$
${F_b} = B(BCla)l$
${F_b} = {B^2}C{l^2}a$
This makes the total forces acting on the wire two. On balancing the net force can be given by-
${F_{net}} = F - {F_b}$
$ma = F - {B^2}{l^2}Ca$
On rearranging,
$F = a(m + {B^2}{l^2}C)$
Therefore the acceleration is given by-
$a = \dfrac{F}{{m + {B^2}{l^2}C}}$
Hence, option (D) is correct.
Note: The currents in both wires are assumed to be equal because there is a mention about no losses in the question, generally inductance has very less amount of losses but there is always a loss associated with a device.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main