
After 2 hours, only 1/16th of the original decaying nuclei were present. What is the half-life of the sample?
Answer
133.5k+ views
Hint: Half-Life as the name suggests it is the required time interval for a radioactive sample to decay to its one-half. It can also be stated as the required time interval that is needed for a number of radioactive disintegration each second of a radioactive material to get to its one-half.
Complete step by step solution:
Find the Half-Life:
$N\left( t \right) = {N_o}{\left( {\dfrac{1}{2}} \right)^{\dfrac{t}{{{t_{1/2}}}}}}$;
Here:
$N\left( t \right)$= Quantity of the Substance remaining;
${N_o}$ = Quantity of the original substance;
t = Time elapsed;
${t_{1/2}}$= Half – Life.
Put in the given values:
$\left( {\dfrac{1}{{16}}} \right){N_o} = {N_o}{\left( {\dfrac{1}{2}} \right)^{\dfrac{2}{{{t_{1/2}}}}}}$;
Cancel out the common factors:
$ \Rightarrow \left( {\dfrac{1}{{16}}} \right) = {\left( {\dfrac{1}{2}} \right)^{\dfrac{2}{{{t_{1/2}}}}}}$;
Make the base on the LHS to the RHS and compare their powers:
$ \Rightarrow {\left( {\dfrac{1}{2}} \right)^4} = {\left( {\dfrac{1}{2}} \right)^{\dfrac{2}{{{t_{1/2}}}}}}$;
Do the needed mathematical Calculations:
$ \Rightarrow \dfrac{2}{{{t_{1/2}}}} = 4$;
So, the half-life would be:
$ \Rightarrow 2 = 4 \times {t_{1/2}}$;
$ \Rightarrow {t_{1/2}} = \dfrac{1}{2}$;
In terms of minutes;
${t_{1/2}} = 30\min $;
The half-life of the sample is 30min.
Additional information:
There are various types of radioactive decays available such as Alpha decay, Beta-Decay and Gamma Decay. These decays happen due to the instability in the nucleus of an atom. The more unstable the nucleus the higher would be the energy of radioactive decay. The lowest level of energy decay is in alpha decay, Beta decay has higher energy decay than alpha decay and in the Gamma decay it is the highest.
Note: Here the quantity of the substance remaining is one sixteenth of the original substance and we have given the time elapsed as 2 hours. Here apply the formula for Half-Life and calculate the known variable.
Complete step by step solution:
Find the Half-Life:
$N\left( t \right) = {N_o}{\left( {\dfrac{1}{2}} \right)^{\dfrac{t}{{{t_{1/2}}}}}}$;
Here:
$N\left( t \right)$= Quantity of the Substance remaining;
${N_o}$ = Quantity of the original substance;
t = Time elapsed;
${t_{1/2}}$= Half – Life.
Put in the given values:
$\left( {\dfrac{1}{{16}}} \right){N_o} = {N_o}{\left( {\dfrac{1}{2}} \right)^{\dfrac{2}{{{t_{1/2}}}}}}$;
Cancel out the common factors:
$ \Rightarrow \left( {\dfrac{1}{{16}}} \right) = {\left( {\dfrac{1}{2}} \right)^{\dfrac{2}{{{t_{1/2}}}}}}$;
Make the base on the LHS to the RHS and compare their powers:
$ \Rightarrow {\left( {\dfrac{1}{2}} \right)^4} = {\left( {\dfrac{1}{2}} \right)^{\dfrac{2}{{{t_{1/2}}}}}}$;
Do the needed mathematical Calculations:
$ \Rightarrow \dfrac{2}{{{t_{1/2}}}} = 4$;
So, the half-life would be:
$ \Rightarrow 2 = 4 \times {t_{1/2}}$;
$ \Rightarrow {t_{1/2}} = \dfrac{1}{2}$;
In terms of minutes;
${t_{1/2}} = 30\min $;
The half-life of the sample is 30min.
Additional information:
There are various types of radioactive decays available such as Alpha decay, Beta-Decay and Gamma Decay. These decays happen due to the instability in the nucleus of an atom. The more unstable the nucleus the higher would be the energy of radioactive decay. The lowest level of energy decay is in alpha decay, Beta decay has higher energy decay than alpha decay and in the Gamma decay it is the highest.
Note: Here the quantity of the substance remaining is one sixteenth of the original substance and we have given the time elapsed as 2 hours. Here apply the formula for Half-Life and calculate the known variable.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

Current Loop as Magnetic Dipole and Its Derivation for JEE
