
An electron and a photon, each has a de-Broglie wavelength of $1.2A°$. The ratio of their energies will be:
A) $1:1$
B) $1:10$
C) $1:100$
D) $1:1000$
Answer
134.4k+ views
Hint: The de-Broglie equation states that a matter can act as waves as well as particles same as that of light and radiation. Every moving particle has a wavelength. This equation is one of the important equations that is used to define the properties of matter.
Complete step by step solution:
The particles that have very low mass move at a less speed than the speed of light. The De-Broglie equation gives a relationship between the mass and the wavelength of the particle. The wavelength for a photon is given by
$\lambda = \dfrac{h}{p}$
Or $\lambda = \dfrac{h}{{\dfrac{{{E_p}}}{c}}} = \dfrac{{hc}}{{{E_p}}}$---(i)
Where ‘h’ is Planck’s constant
‘c’ is the speed of light
${E_p}$is the energy of proton
The De-Broglie wavelength for an electron is given by
$\lambda = \dfrac{h}{p}$
‘h’ is Planck’s constant
‘p’ is the momentum
Or $\lambda = \dfrac{h}{{\sqrt {2m{E_e}} }}$---(ii)
Squaring equation (ii), it becomes
${\lambda ^2} = \dfrac{{{h^2}}}{{2m{E_e}}}$---(iii)
Dividing equation (i) and equation (iii) and calculating their ratios,
$ \Rightarrow \dfrac{\lambda }{{{\lambda ^2}}} = \dfrac{{\dfrac{{hc}}{{{E_p}}}}}{{\dfrac{{{h^2}}}{{2m{E_e}}}}}$
$ \Rightarrow \dfrac{1}{\lambda } = \dfrac{{hc}}{{{E_p}}} \times \dfrac{{2m{E_e}}}{{{h^2}}}$
$ \Rightarrow \dfrac{1}{\lambda } = 2mc\dfrac{{{E_e}}}{{h{E_p}}}$
$ \Rightarrow \dfrac{{{E_e}}}{{{E_p}}} = \dfrac{h}{{2mc\lambda }}$---(iv)
Given that the de-Broglie wavelength is$\lambda = 1.2A = 1.2 \times {10^{ - 10}}m$
Mass of the electron is $m = 9.1 \times {10^{ - 31}}kg$
Speed of the light is $c = 3 \times {10^8}m/s$
$h = 6.62 \times {10^{ - 34}}Js$
Substituting all the values in equation (iv) and solving for the ratio,
$ \Rightarrow \dfrac{{{E_e}}}{{{E_p}}} = \dfrac{{6.62 \times {{10}^{ - 34}}}}{{2 \times 9.1 \times {{10}^{ - 31}} \times 3 \times {{10}^8} \times 1.2 \times {{10}^{ - 10}}}}$
$ \Rightarrow \dfrac{{{E_e}}}{{{E_p}}} = \dfrac{1}{{100}}$
Or ${E_e}:{E_p} = 1:100$
Therefore, Option (C) is the right answer.
Note: It is to be noted that the electrons and photons are microscopic particles. They possess a dual nature property. This means that they have wavelength and also have frequency. Any particle that is moving will have a wave character and is called matter waves. The wave and the particle nature of the matter are complementary to each other.
Complete step by step solution:
The particles that have very low mass move at a less speed than the speed of light. The De-Broglie equation gives a relationship between the mass and the wavelength of the particle. The wavelength for a photon is given by
$\lambda = \dfrac{h}{p}$
Or $\lambda = \dfrac{h}{{\dfrac{{{E_p}}}{c}}} = \dfrac{{hc}}{{{E_p}}}$---(i)
Where ‘h’ is Planck’s constant
‘c’ is the speed of light
${E_p}$is the energy of proton
The De-Broglie wavelength for an electron is given by
$\lambda = \dfrac{h}{p}$
‘h’ is Planck’s constant
‘p’ is the momentum
Or $\lambda = \dfrac{h}{{\sqrt {2m{E_e}} }}$---(ii)
Squaring equation (ii), it becomes
${\lambda ^2} = \dfrac{{{h^2}}}{{2m{E_e}}}$---(iii)
Dividing equation (i) and equation (iii) and calculating their ratios,
$ \Rightarrow \dfrac{\lambda }{{{\lambda ^2}}} = \dfrac{{\dfrac{{hc}}{{{E_p}}}}}{{\dfrac{{{h^2}}}{{2m{E_e}}}}}$
$ \Rightarrow \dfrac{1}{\lambda } = \dfrac{{hc}}{{{E_p}}} \times \dfrac{{2m{E_e}}}{{{h^2}}}$
$ \Rightarrow \dfrac{1}{\lambda } = 2mc\dfrac{{{E_e}}}{{h{E_p}}}$
$ \Rightarrow \dfrac{{{E_e}}}{{{E_p}}} = \dfrac{h}{{2mc\lambda }}$---(iv)
Given that the de-Broglie wavelength is$\lambda = 1.2A = 1.2 \times {10^{ - 10}}m$
Mass of the electron is $m = 9.1 \times {10^{ - 31}}kg$
Speed of the light is $c = 3 \times {10^8}m/s$
$h = 6.62 \times {10^{ - 34}}Js$
Substituting all the values in equation (iv) and solving for the ratio,
$ \Rightarrow \dfrac{{{E_e}}}{{{E_p}}} = \dfrac{{6.62 \times {{10}^{ - 34}}}}{{2 \times 9.1 \times {{10}^{ - 31}} \times 3 \times {{10}^8} \times 1.2 \times {{10}^{ - 10}}}}$
$ \Rightarrow \dfrac{{{E_e}}}{{{E_p}}} = \dfrac{1}{{100}}$
Or ${E_e}:{E_p} = 1:100$
Therefore, Option (C) is the right answer.
Note: It is to be noted that the electrons and photons are microscopic particles. They possess a dual nature property. This means that they have wavelength and also have frequency. Any particle that is moving will have a wave character and is called matter waves. The wave and the particle nature of the matter are complementary to each other.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

What are examples of Chemical Properties class 10 chemistry JEE_Main

JEE Main 2025 Session 2 Schedule Released – Check Important Details Here!

JEE Main 2025 Session 2 Admit Card – Release Date & Direct Download Link

JEE Main 2025 Session 2 Registration (Closed) - Link, Last Date & Fees

JEE Mains Result 2025 NTA NIC – Check Your Score Now!

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Elastic Collisions in One Dimension - JEE Important Topic

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage
