Answer
Verified
99.9k+ views
Hint: Efficiency of a turbine can be expressed as the ratio of output mechanical shaft power of the turbine to input mechanical fluid power of the turbine. That is the turbine efficiency is the ratio of actual work output of the turbine to the net input energy supplied in the form of fuel of the turbine.
Useful formula:
The power generated by the turbine generator is given by the formula of;
$P = mgh$
Where, $P$ denotes the power generated by the power hydroelectric plant, $m$ mass of the water flow, $g$ denotes the acceleration due to gravity,$h$ denotes the height of the pressurised water head.
Complete step by step solution:
The data given in the problem are;
Height of the water power head is, $h = 300\,\,m$,
Velocity of the water flow is, $v = 100\,\,{m^3}{s^{ - 1}}$,
Efficiency of the turbine generator, $\eta = 60\,\% $.
Acceleration due to gravity, $g = 9.8\,\,m{s^{ - 2}}$.
The power generated by the turbine generator is given by the formula of;
$P = mgh$
We know that $m = \rho v$;
Where, $\rho $ denotes the density of the water flow, $v$ denotes the rate of which the water flows.
That is;
$P = \rho v \times gh$
Substitute the values of gravity, height, velocity of the water on the above equation;
$
P = 1000 \times 100 \times 9.8 \times 300 \\
P = 294 \times {10^6}\,\,W \\
P = 294\,\,MW \\
$
The power generated by the turbine generator is given as $P = 294\,\,MW.$
The estimated power available for the plant is given as;
${P_a} = \eta \times P$
Where, ${P_a}$ denotes the estimated electric power available for the plant, $\eta $ denotes the efficiency of the turbine of the generator.
Substitute the value of efficiency of the turbine generator and the power of the generator;
$
{P_a} = 60\,\% \times 294 \\
{P_a} = \dfrac{{60}}{{100}} \times 294 \\
{P_a} = 0.6 \times 294 \\
{P_a} = 176.4\,\,MW \\
$
Therefore, the estimated power available for the plant is given as \[{P_a} = 176.4\,\,MW\].
Note: the estimated power available for the plant is directly proportional to the efficiency of the electric turbine motor that is if the efficiency of the electric turbine motor the power available for the plant also increases along with the efficiency.
Useful formula:
The power generated by the turbine generator is given by the formula of;
$P = mgh$
Where, $P$ denotes the power generated by the power hydroelectric plant, $m$ mass of the water flow, $g$ denotes the acceleration due to gravity,$h$ denotes the height of the pressurised water head.
Complete step by step solution:
The data given in the problem are;
Height of the water power head is, $h = 300\,\,m$,
Velocity of the water flow is, $v = 100\,\,{m^3}{s^{ - 1}}$,
Efficiency of the turbine generator, $\eta = 60\,\% $.
Acceleration due to gravity, $g = 9.8\,\,m{s^{ - 2}}$.
The power generated by the turbine generator is given by the formula of;
$P = mgh$
We know that $m = \rho v$;
Where, $\rho $ denotes the density of the water flow, $v$ denotes the rate of which the water flows.
That is;
$P = \rho v \times gh$
Substitute the values of gravity, height, velocity of the water on the above equation;
$
P = 1000 \times 100 \times 9.8 \times 300 \\
P = 294 \times {10^6}\,\,W \\
P = 294\,\,MW \\
$
The power generated by the turbine generator is given as $P = 294\,\,MW.$
The estimated power available for the plant is given as;
${P_a} = \eta \times P$
Where, ${P_a}$ denotes the estimated electric power available for the plant, $\eta $ denotes the efficiency of the turbine of the generator.
Substitute the value of efficiency of the turbine generator and the power of the generator;
$
{P_a} = 60\,\% \times 294 \\
{P_a} = \dfrac{{60}}{{100}} \times 294 \\
{P_a} = 0.6 \times 294 \\
{P_a} = 176.4\,\,MW \\
$
Therefore, the estimated power available for the plant is given as \[{P_a} = 176.4\,\,MW\].
Note: the estimated power available for the plant is directly proportional to the efficiency of the electric turbine motor that is if the efficiency of the electric turbine motor the power available for the plant also increases along with the efficiency.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
Dependence of intensity of gravitational field E of class 11 physics JEE_Main
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main