
At what distance on the axis, from the centre of a circular current carrying coil of radius ${{r}}$, the magnetic field becomes $(\dfrac{1}{8})^{th}$ of the magnetic field at centre?
A) $\sqrt {{2}} {{r}}$
B) $2^{3/2} r$
C) $\sqrt{3} r$
D) $3 \sqrt{{2}} {{r}} $
Answer
232.8k+ views
Hint: First of all, write the formula of magnetic field on the axis of the circular coil i.e. $B = \dfrac{\mu _0 i r^2} {2(r^2 + z^2)^{3/2}}$ and then write the formula of magnetic field from the centre of a circular current carrying coil i.e. ${{B' = }}\dfrac{{{{{\mu }}_{{0}}}{{i}}}}{{{{2r}}}}$. Use these two formulas and the given relation in the question and then equate.
Complete step by step solution:
Given: Radius of current carrying coil is ${{r}}$
Magnetic field at the axis is $(\dfrac{1}{8})^{th}$ times to that of the magnetic field at centre
To find: Distance on the axis
Formula for magnetic field on the axis of the circular coil is given by:
$B = \dfrac{\mu _0 i r^2} {2(r^2 + z^2)^{3/2}}$
Formula for magnetic at the center of the circular coil is given by
${{B' = }}\dfrac{{{{{\mu }}_{{0}}}{{i}}}}{{{{2r}}}}$
According to the given question, ${{B = }}\dfrac{{{1}}}{{{8}}}{{B'}}$
On substituting the values in above relation, we get
$\Rightarrow B = \dfrac{\mu _0 i r^2} {2(r^2 + z^2)^{3/2}}$ = $\dfrac{{{{{\mu }}_{{0}}}{{i}}}}{{{{2r}}}}$
On simplification, we get
$\Rightarrow 8r^3 = (r^2 + z^2)^{3/2}$
On rearranging the terms and on further simplification, we get
$\Rightarrow (4r^2)^3 = (r^2 + z^2)^3$
Taking cube root both sides, we get
$\Rightarrow 4r^2 = r^2 +z^2$
Again on rearranging terms, we get
$\Rightarrow z = \sqrt{{3}} r$
Thus, at distance, $z = \sqrt{{3}} r$ on the axis, from the centre of a circular current carrying coil of radius${{r}}$, the magnetic field becomes $(\dfrac{1}{8})^{th}$ of the magnetic field at centre.
Therefore, option (C) is the correct choice.
Note: The value of the magnetic field varies along the axis of the coil as at the centre of the coil, the magnetic field will be uniform. Just as the location of the point increases from the centre of the coil, then the value of the magnetic field decreases where ${{{\mu }}_{{0}}}$ the value of absolute permeability in free space. However, the horizontal component of the earth's magnetic field varies greatly over the surface of the earth.
Complete step by step solution:
Given: Radius of current carrying coil is ${{r}}$
Magnetic field at the axis is $(\dfrac{1}{8})^{th}$ times to that of the magnetic field at centre
To find: Distance on the axis
Formula for magnetic field on the axis of the circular coil is given by:
$B = \dfrac{\mu _0 i r^2} {2(r^2 + z^2)^{3/2}}$
Formula for magnetic at the center of the circular coil is given by
${{B' = }}\dfrac{{{{{\mu }}_{{0}}}{{i}}}}{{{{2r}}}}$
According to the given question, ${{B = }}\dfrac{{{1}}}{{{8}}}{{B'}}$
On substituting the values in above relation, we get
$\Rightarrow B = \dfrac{\mu _0 i r^2} {2(r^2 + z^2)^{3/2}}$ = $\dfrac{{{{{\mu }}_{{0}}}{{i}}}}{{{{2r}}}}$
On simplification, we get
$\Rightarrow 8r^3 = (r^2 + z^2)^{3/2}$
On rearranging the terms and on further simplification, we get
$\Rightarrow (4r^2)^3 = (r^2 + z^2)^3$
Taking cube root both sides, we get
$\Rightarrow 4r^2 = r^2 +z^2$
Again on rearranging terms, we get
$\Rightarrow z = \sqrt{{3}} r$
Thus, at distance, $z = \sqrt{{3}} r$ on the axis, from the centre of a circular current carrying coil of radius${{r}}$, the magnetic field becomes $(\dfrac{1}{8})^{th}$ of the magnetic field at centre.
Therefore, option (C) is the correct choice.
Note: The value of the magnetic field varies along the axis of the coil as at the centre of the coil, the magnetic field will be uniform. Just as the location of the point increases from the centre of the coil, then the value of the magnetic field decreases where ${{{\mu }}_{{0}}}$ the value of absolute permeability in free space. However, the horizontal component of the earth's magnetic field varies greatly over the surface of the earth.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

