Answer
Verified
110.4k+ views
Hint: In this question, use the Kirchhoff’s law to calculate the values of resistance and the inductance of the circuit. According to Kirchhoff's law potential difference is equal to the product of current and resistance and sum of the inductance.
Complete step by step answer:
Let us consider figure (1), we have given a circuit with current of \[2\;{\text{A}}\] and increasing at rate of \[1\;{\text{A/s}}\], the measured potential difference \[{V_{ab}} = 8\;V\]. And when the current is \[2\;{\text{A}}\] is decreasing at the rate of \[1\;{\text{A/s}}\] the measured potential difference \[{V_{ab}} = 4\;V\].
As we know, Kirchhoff’s law states that the current flowing inside the circuit and outside the circuit will be the same. Kirchhoff’s law is also known as the conservation law of the current.
Now, we calculate the value for the potential difference as,
\[ \Rightarrow {V_A} - IR - L\dfrac{{dI}}{{dt}} = {V_b}\]
After simplification we get,
\[ \Rightarrow {V_A} - {V_b} = IR + L\dfrac{{dI}}{{dt}}\]
Now we substitute the value of current and the potential difference,
\[8 = 2R + L\left( 1 \right)\]
Simplify the equation and we get
\[8 = 2R + L......\left( 1 \right)\]
Simplify the above equation again and get,
\[ \Rightarrow \dfrac{{8 - L}}{2} = R\]
Now, we calculate the value for the potential difference \[{V_{ab}} = 4\;V\]
\[ \Rightarrow {V_A} - IR - L\dfrac{{dI}}{{dt}} = {V_b}\]
After simplification we get,
\[ \Rightarrow {V_A} - {V_b} = IR + L\dfrac{{dI}}{{dt}}\]
Now, we substitute the value of current and the potential difference,
\[ \Rightarrow 4 = 2R + L\left( { - 1} \right)\]
Simplify the equation and we get
\[ \Rightarrow 4 = 2R - L\]
Put the value of \[R\] in equation in the above equation,
\[ \Rightarrow 4 = 2\left( {\dfrac{{8 - L}}{2}} \right) - L\]
After simplification we get,
\[\therefore L = 2\;{\text{H}}\]
Now, we substitute the value of \[L\] in equation \[\left( 1 \right)\]
\[ \Rightarrow 8 = 2R + 2\]
After simplification we get,
\[\therefore R = 3\;\Omega \]
Therefore, The value of \[{\text{R}}\] is \[3\;\Omega \] and the value of \[{\text{L}}\] is \[2\;{\text{H}}\].
So, the option \[\left( A \right)\] is correct.
Note: In this question, do not forget to write the SI unit of the frequency. And the SI unit of the inductance is Henry\[\left( {\text{H}} \right)\].Conservation of the current law means the current inside and outside is the same.
Complete step by step answer:
Let us consider figure (1), we have given a circuit with current of \[2\;{\text{A}}\] and increasing at rate of \[1\;{\text{A/s}}\], the measured potential difference \[{V_{ab}} = 8\;V\]. And when the current is \[2\;{\text{A}}\] is decreasing at the rate of \[1\;{\text{A/s}}\] the measured potential difference \[{V_{ab}} = 4\;V\].
As we know, Kirchhoff’s law states that the current flowing inside the circuit and outside the circuit will be the same. Kirchhoff’s law is also known as the conservation law of the current.
Now, we calculate the value for the potential difference as,
\[ \Rightarrow {V_A} - IR - L\dfrac{{dI}}{{dt}} = {V_b}\]
After simplification we get,
\[ \Rightarrow {V_A} - {V_b} = IR + L\dfrac{{dI}}{{dt}}\]
Now we substitute the value of current and the potential difference,
\[8 = 2R + L\left( 1 \right)\]
Simplify the equation and we get
\[8 = 2R + L......\left( 1 \right)\]
Simplify the above equation again and get,
\[ \Rightarrow \dfrac{{8 - L}}{2} = R\]
Now, we calculate the value for the potential difference \[{V_{ab}} = 4\;V\]
\[ \Rightarrow {V_A} - IR - L\dfrac{{dI}}{{dt}} = {V_b}\]
After simplification we get,
\[ \Rightarrow {V_A} - {V_b} = IR + L\dfrac{{dI}}{{dt}}\]
Now, we substitute the value of current and the potential difference,
\[ \Rightarrow 4 = 2R + L\left( { - 1} \right)\]
Simplify the equation and we get
\[ \Rightarrow 4 = 2R - L\]
Put the value of \[R\] in equation in the above equation,
\[ \Rightarrow 4 = 2\left( {\dfrac{{8 - L}}{2}} \right) - L\]
After simplification we get,
\[\therefore L = 2\;{\text{H}}\]
Now, we substitute the value of \[L\] in equation \[\left( 1 \right)\]
\[ \Rightarrow 8 = 2R + 2\]
After simplification we get,
\[\therefore R = 3\;\Omega \]
Therefore, The value of \[{\text{R}}\] is \[3\;\Omega \] and the value of \[{\text{L}}\] is \[2\;{\text{H}}\].
So, the option \[\left( A \right)\] is correct.
Note: In this question, do not forget to write the SI unit of the frequency. And the SI unit of the inductance is Henry\[\left( {\text{H}} \right)\].Conservation of the current law means the current inside and outside is the same.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main