
Electrons in a certain energy level \[n = {n_1}\] , can emit 3 spectral lines. When they are at another energy level, \[n = {n_2}\]. They can emit 6 spectral lines. The orbital speed of the electrons in the two orbits are in the ratio of
A. 4:3
B. 3:4
C. 2:1
D. 1:2
Answer
219k+ views
Hint:The electron jumps to the lower energy level by radiating out energy in the form of spectral lines. The number of spectral lines is proportional to the possible number of transitions made by the electron to reach the ground state.
Formula used:
Using Bohr’s postulate the speed of electron in nth state is given as,
\[{v_n} = \dfrac{{2\pi KZ{e^2}}}{{nh}}\]
The number of emission spectral lines emitted by the electron during transition from nth state to the ground state is given as,
\[N = \dfrac{{n\left( {n - 1} \right)}}{2}\]
Complete step by step solution:
When an electron is in nth state and jumps to the ground state then it releases energy in the form of radiation and emits the spectral lines. The number of emission spectral lines emitted by the electron during transition from nth state to the ground state is given as,
\[N = \dfrac{{n\left( {n - 1} \right)}}{2}\]
It is given that when the electron is in the state \[n = {n_1}\] then it emits a total of 3 spectral lines.
Putting in the expression for the number of spectral lines emitted, we get
\[3 = \dfrac{{{n_1}\left( {{n_1} - 1} \right)}}{2}\]
On solving the equation, we get
\[n_1^2 - {n_1} - 6 = 0\]
\[\Rightarrow n_1^2 - 3{n_1} + 2{n_1} - 6 = 0\]
\[\Rightarrow \left( {{n_1} - 3} \right)\left( {{n_1} + 2} \right) = 0\]
As the state of the electron is a positive whole number, so the value of \[{n_1}\] is 3.
Similarly for the state \[{n_2}\] the number of spectral lines emitted is 6. Putting in the expression for the number of spectral lines emitted, we get
\[6 = \dfrac{{{n_2}\left( {{n_2} - 1} \right)}}{2}\]
On solving the equation, we get
\[n_2^2 - {n_2} - 12 = 0\]
\[\Rightarrow n_2^2 - 4{n_2} + 3{n_2} - 12 = 0\]
\[\Rightarrow \left( {{n_2} - 4} \right)\left( {{n_1} + 3} \right) = 0\]
Hence, the value of \[{n_2}\] is 4.
Using Bohr’s postulate the speed of electron in nth state is given as,
\[{v_n} = \dfrac{{2\pi KZ{e^2}}}{{nh}}\]
So, the ratio of the speeds of the electron in both the state is,
\[\dfrac{{{v_1}}}{{{v_2}}} = \dfrac{{\dfrac{{2\pi KZ{e^2}}}{{{n_1}h}}}}{{\dfrac{{2\pi KZ{e^2}}}{{{n_2}h}}}} \\ \]
\[\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{{{n_2}}}{{{n_1}}} \\ \]
\[\therefore \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{4}{3}\]
Hence, the ratio of the speed of the electron in both the states is 4:3.
Therefore, the correct option is A.
Note: We must be careful while choosing the solution of the quadratic equation. As the principal quantum number is a positive whole number, we need to choose only the positive solution of the quadratic equation.
Formula used:
Using Bohr’s postulate the speed of electron in nth state is given as,
\[{v_n} = \dfrac{{2\pi KZ{e^2}}}{{nh}}\]
The number of emission spectral lines emitted by the electron during transition from nth state to the ground state is given as,
\[N = \dfrac{{n\left( {n - 1} \right)}}{2}\]
Complete step by step solution:
When an electron is in nth state and jumps to the ground state then it releases energy in the form of radiation and emits the spectral lines. The number of emission spectral lines emitted by the electron during transition from nth state to the ground state is given as,
\[N = \dfrac{{n\left( {n - 1} \right)}}{2}\]
It is given that when the electron is in the state \[n = {n_1}\] then it emits a total of 3 spectral lines.
Putting in the expression for the number of spectral lines emitted, we get
\[3 = \dfrac{{{n_1}\left( {{n_1} - 1} \right)}}{2}\]
On solving the equation, we get
\[n_1^2 - {n_1} - 6 = 0\]
\[\Rightarrow n_1^2 - 3{n_1} + 2{n_1} - 6 = 0\]
\[\Rightarrow \left( {{n_1} - 3} \right)\left( {{n_1} + 2} \right) = 0\]
As the state of the electron is a positive whole number, so the value of \[{n_1}\] is 3.
Similarly for the state \[{n_2}\] the number of spectral lines emitted is 6. Putting in the expression for the number of spectral lines emitted, we get
\[6 = \dfrac{{{n_2}\left( {{n_2} - 1} \right)}}{2}\]
On solving the equation, we get
\[n_2^2 - {n_2} - 12 = 0\]
\[\Rightarrow n_2^2 - 4{n_2} + 3{n_2} - 12 = 0\]
\[\Rightarrow \left( {{n_2} - 4} \right)\left( {{n_1} + 3} \right) = 0\]
Hence, the value of \[{n_2}\] is 4.
Using Bohr’s postulate the speed of electron in nth state is given as,
\[{v_n} = \dfrac{{2\pi KZ{e^2}}}{{nh}}\]
So, the ratio of the speeds of the electron in both the state is,
\[\dfrac{{{v_1}}}{{{v_2}}} = \dfrac{{\dfrac{{2\pi KZ{e^2}}}{{{n_1}h}}}}{{\dfrac{{2\pi KZ{e^2}}}{{{n_2}h}}}} \\ \]
\[\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{{{n_2}}}{{{n_1}}} \\ \]
\[\therefore \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{4}{3}\]
Hence, the ratio of the speed of the electron in both the states is 4:3.
Therefore, the correct option is A.
Note: We must be careful while choosing the solution of the quadratic equation. As the principal quantum number is a positive whole number, we need to choose only the positive solution of the quadratic equation.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

