Explain Davisson -Germer’s experiment with the help of a diagram.
Answer
Verified
121.5k+ views
Hint: Here, in the Davisson and Germer experiment, he showed that an electron beam can undergo diffraction when it is passed through the atomic crystals. This in turn shows that the wave nature of electrons as waves can exhibit interference and diffraction patterns.
Complete step by step solution:
Initially, the scientists could only explain the particle nature of electrons but failed to explain the properties related to their wave nature. C.J. Davisson and L.H. Germer conducted an experiment in the year 1927, popularly known as Davisson-Germer’s experiment in order to explain the wave nature of electrons through the electron diffraction process.
Image: Experimental setup of Davisson Germer experiment
The experimental arrangement and working of the Davisson Germer experiment are discussed below:
An electron gun consisting of a tungsten filament F was coated with barium oxide and heated through a low voltage power supply. While applying the suitable potential difference from a high voltage power supply, the electron gun emits electrons which are again accelerated to a particular velocity. The cylinder was perforated with fine holes along its axis, these emitted electrons were made to pass through it, thus producing a finely collimated beam.
This finely collimated beam produced from the cylinder is again made to fall on the surface of a nickel crystal. Due to this, the electrons will get scattered in various directions and the beam of electrons produced has a certain amount of intensity which is measured by the electron detector and then it is connected to a sensitive galvanometer (to record the current readings), it is then moved on a circular scale.
Then by moving the detector on the circular scale at different positions, that is changing the \[\theta \](angle between the incident beam and the scattered electron beams), the intensity of the scattered electron beam can be measured for different values of angle of scattering.
Let’s see the observations made by Davisson Germer’s experiment. Here we obtain the variation of the intensity (I) of the scattered electrons by changing the angle of scattering, \[\theta \]. The accelerated voltage varied from 44V to 68 V. when we start changing the accelerating potential difference
An accelerating voltage of 54V at a scattering angle \[\theta = {50^0}\], we could see a strong peak in the intensity and this strong peak was the result of constructive interference of the electrons. Using the data of electron diffraction, the wavelength of matter waves was calculated.
Thus, Davisson Germer’s experiment confirms the wave nature of electrons.
Note:Davisson and Germer’s experiments proves the De-Broglie Hypothesis that the electron exists in wave nature as well by this it is possible to understand the structure of particles at the nanoscale using electron diffraction.
Complete step by step solution:
Initially, the scientists could only explain the particle nature of electrons but failed to explain the properties related to their wave nature. C.J. Davisson and L.H. Germer conducted an experiment in the year 1927, popularly known as Davisson-Germer’s experiment in order to explain the wave nature of electrons through the electron diffraction process.
Image: Experimental setup of Davisson Germer experiment
The experimental arrangement and working of the Davisson Germer experiment are discussed below:
An electron gun consisting of a tungsten filament F was coated with barium oxide and heated through a low voltage power supply. While applying the suitable potential difference from a high voltage power supply, the electron gun emits electrons which are again accelerated to a particular velocity. The cylinder was perforated with fine holes along its axis, these emitted electrons were made to pass through it, thus producing a finely collimated beam.
This finely collimated beam produced from the cylinder is again made to fall on the surface of a nickel crystal. Due to this, the electrons will get scattered in various directions and the beam of electrons produced has a certain amount of intensity which is measured by the electron detector and then it is connected to a sensitive galvanometer (to record the current readings), it is then moved on a circular scale.
Then by moving the detector on the circular scale at different positions, that is changing the \[\theta \](angle between the incident beam and the scattered electron beams), the intensity of the scattered electron beam can be measured for different values of angle of scattering.
Let’s see the observations made by Davisson Germer’s experiment. Here we obtain the variation of the intensity (I) of the scattered electrons by changing the angle of scattering, \[\theta \]. The accelerated voltage varied from 44V to 68 V. when we start changing the accelerating potential difference
An accelerating voltage of 54V at a scattering angle \[\theta = {50^0}\], we could see a strong peak in the intensity and this strong peak was the result of constructive interference of the electrons. Using the data of electron diffraction, the wavelength of matter waves was calculated.
Thus, Davisson Germer’s experiment confirms the wave nature of electrons.
Note:Davisson and Germer’s experiments proves the De-Broglie Hypothesis that the electron exists in wave nature as well by this it is possible to understand the structure of particles at the nanoscale using electron diffraction.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
Sign up for JEE Main 2025 Live Classes - Vedantu
JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address
Trending doubts
JEE Main Chemistry Exam Pattern 2025
Collision - Important Concepts and Tips for JEE
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
Clemmenson and Wolff Kishner Reductions for JEE
JEE Main Course 2025: Get All the Relevant Details
JEE Main 2022 June 25 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
JEE Main Maths Paper Pattern 2025
Electromagnetic Waves Chapter - Physics JEE Main
JEE Advanced 2025 Revision Notes for Practical Organic Chemistry
Introduction to Dimensions With Different Units and Formula for JEE