
Find the total number of $9$ digit numbers which have all different digits.
Answer
217.5k+ views
Hint: This is solved by using a number of permutations of $n$ distinct objects formula.
We have to make a $9$ digit number which have all different digits,
Now total number of digits$ = 10$
$i.e.{\text{ }}0,1,2,3,4,5,6,7,8,9$
And we require $9$ different numbers, thus $0$ can’t be placed first
$ \Rightarrow $ first place can be filled in $9$ ways
Now the ${2^{nd}}$ digit can be anything in the range $\left[ {0,9} \right]$ except for the one used for ${1^{st}}$ digit since we
do not want repetition of the digits.
$\therefore $ There are $9$ ways of filling the ${2^{nd}}$ digit of the number.
Similarly, ${3^{rd}}$ digit can be filled in 8 ways and so on….
Now total number of 9 digit numbers which have all different digits
$ = 9 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2$
$ = 9 \times 9!$
Note: In this question we simply use the number of permutations of $n$ different objects formula and also keeping the thing in mind that $0$ can’t be placed first, then we solve this question and we get our answer.
We have to make a $9$ digit number which have all different digits,
Now total number of digits$ = 10$
$i.e.{\text{ }}0,1,2,3,4,5,6,7,8,9$
And we require $9$ different numbers, thus $0$ can’t be placed first
$ \Rightarrow $ first place can be filled in $9$ ways
Now the ${2^{nd}}$ digit can be anything in the range $\left[ {0,9} \right]$ except for the one used for ${1^{st}}$ digit since we
do not want repetition of the digits.
$\therefore $ There are $9$ ways of filling the ${2^{nd}}$ digit of the number.
Similarly, ${3^{rd}}$ digit can be filled in 8 ways and so on….
Now total number of 9 digit numbers which have all different digits
$ = 9 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2$
$ = 9 \times 9!$
Note: In this question we simply use the number of permutations of $n$ different objects formula and also keeping the thing in mind that $0$ can’t be placed first, then we solve this question and we get our answer.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field Due to a Uniformly Charged Ring Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

