
For the reaction, \[4N{H_3} + 5{O_2} \to 4NO + 6{H_2}O\], if the rate of disappearance of \[N{H_3}\] is \[3.6 \times {10^{ - 3}}mol{L^{ - 1}}{s^{ - 1}}\], what is the rate of formation of \[{H_2}O\]?
(A) \[5.4 \times {10^{ - 3}}mol{L^{ - 1}}{s^{ - 1}}\]
(B) \[3.6 \times {10^{ - 3}}mol{L^{ - 1}}{s^{ - 1}}\]
(C) \[4 \times {10^{ - 4}}mol{L^{ - 1}}{s^{ - 1}}\]
(D) \[0.6 \times {10^{ - 4}}mol{L^{ - 1}}{s^{ - 1}}\]
Answer
135.6k+ views
Hint: Try to recall that rate of reaction is defined as the change in any one of the reactants or products per unit time. Now, by using this you can easily find the correct option from the given one.
Complete step by step solution:
It is known to you that the rate of a reaction can be expressed in terms of any reactant or product.
As concentration of reactant decreases, a negative sign is used to express the rate of reaction in terms of reactants.
As concentration of products increases, a positive sign is used to express the rate of reaction in terms of products.
Also, to get a unique value of the reaction rate (independent of the concentration terms chosen), we divide the rate of reaction defined with any of the reactants or products by the stoichiometric coefficient of that reactant or product involved in the reaction.
For the reaction, \[4N{H_3} + 5{O_2} \to 4NO + 6{H_2}O\]
Rate of reaction \[ = - \dfrac{1}{4}\dfrac{{\Delta \left[ {N{H_3}} \right]}}{{\Delta t}} = - \dfrac{1}{5}\dfrac{{\Delta \left[ {{O_2}} \right]}}{{\Delta t}} = \dfrac{1}{4}\dfrac{{\Delta \left[ {NO} \right]}}{{\Delta t}} = \dfrac{1}{6}\dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}}\]
Given, rate of disappearance of \[N{H_3}\]=\[ - \dfrac{{\Delta \left[ {N{H_3}} \right]}}{{\Delta t}}\]=\[3.6 \times {10^{ - 3}}mol{L^{ - 1}}{s^{ - 1}}\].
Rate of formation of \[{H_2}O\]=\[\dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}}\].
From rate equation,
\[ \Rightarrow \dfrac{1}{4}\dfrac{{\Delta \left[ {N{H_3}} \right]}}{{\Delta t}} = \dfrac{1}{6}\dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}}\]
\[\therefore \dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}} = \dfrac{6}{4} \times 3.6 \times {10^{ - 3}} = 5.4 \times {10^{ - 3}}mol{L^{ - 1}}{s^{ - 1}}\].
Hence, from above we can conclude that option A is the correct option to the given question.
Note:
- It should be remembered to you that in aqueous solutions, the rate of a reaction is not expressed in terms of change of concentration of water because the change is very small and negligible.
- Also, you should remember that the plot of concentration of reactant vs time, the tangent at any instant of time has a negative solution.
Complete step by step solution:
It is known to you that the rate of a reaction can be expressed in terms of any reactant or product.
As concentration of reactant decreases, a negative sign is used to express the rate of reaction in terms of reactants.
As concentration of products increases, a positive sign is used to express the rate of reaction in terms of products.
Also, to get a unique value of the reaction rate (independent of the concentration terms chosen), we divide the rate of reaction defined with any of the reactants or products by the stoichiometric coefficient of that reactant or product involved in the reaction.
For the reaction, \[4N{H_3} + 5{O_2} \to 4NO + 6{H_2}O\]
Rate of reaction \[ = - \dfrac{1}{4}\dfrac{{\Delta \left[ {N{H_3}} \right]}}{{\Delta t}} = - \dfrac{1}{5}\dfrac{{\Delta \left[ {{O_2}} \right]}}{{\Delta t}} = \dfrac{1}{4}\dfrac{{\Delta \left[ {NO} \right]}}{{\Delta t}} = \dfrac{1}{6}\dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}}\]
Given, rate of disappearance of \[N{H_3}\]=\[ - \dfrac{{\Delta \left[ {N{H_3}} \right]}}{{\Delta t}}\]=\[3.6 \times {10^{ - 3}}mol{L^{ - 1}}{s^{ - 1}}\].
Rate of formation of \[{H_2}O\]=\[\dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}}\].
From rate equation,
\[ \Rightarrow \dfrac{1}{4}\dfrac{{\Delta \left[ {N{H_3}} \right]}}{{\Delta t}} = \dfrac{1}{6}\dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}}\]
\[\therefore \dfrac{{\Delta \left[ {{H_2}O} \right]}}{{\Delta t}} = \dfrac{6}{4} \times 3.6 \times {10^{ - 3}} = 5.4 \times {10^{ - 3}}mol{L^{ - 1}}{s^{ - 1}}\].
Hence, from above we can conclude that option A is the correct option to the given question.
Note:
- It should be remembered to you that in aqueous solutions, the rate of a reaction is not expressed in terms of change of concentration of water because the change is very small and negligible.
- Also, you should remember that the plot of concentration of reactant vs time, the tangent at any instant of time has a negative solution.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Half-Life of Order Reactions - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Elastic Collisions in One Dimension - JEE Important Topic

Displacement-Time Graph and Velocity-Time Graph for JEE

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

NCERT Solutions for Class 12 Chemistry Chapter 7 Alcohol Phenol and Ether

NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

Solutions Class 12 Notes: CBSE Chemistry Chapter 1

Electrochemistry Class 12 Notes: CBSE Chemistry Chapter 2
