
What happens when tertiary butyl alcohol is passed over heated copper at $300{}^\circ C$?
(A) Secondary butyl alcohol is formed
(B) $\text{2-methylpropene}$ is formed
(C) $\text{1-butene}$ is formed
(D) Butanal is formed
Answer
425.8k+ views
Hint: Normally the reaction would have been an oxidation reaction. But things change when a tertiary alcohol is present. Formation of double-bond will take place.
Complete step by step answer:
Let us first know about the reaction that is mentioned in the question. Generally when primary or secondary alcohol vapours are passed over heated copper at $300{}^\circ C$ then dehydrogenation or in other words oxidation takes place. It converts the primary alcohol into aldehyde and the secondary one into ketone. The reaction is as below:
- Primary alcohol

- Secondary alcohol

This is not the case with tertiary alcohols as they are difficult to oxidise. In their case, dehydration takes place rather than dehydrogenation. The dehydration takes a hydroxyl and hydrogen atom from adjacent carbons, which results in the formation of a double bond. The reaction is as follows:

As you can see the tertiary butyl alcohol has been dehydrated into an alkene.
So the answer to the above question is option (C) $\text{1-butene}$ is formed.
Additional information:
The formation of the double bond takes place in such a way as to ensure maximum number of hyperconjugative structures. An example is given below:

The product will only be “A” because the number of hyperconjugative structures is $6$while that in “B” is $5$. Number of hyperconjugative structures is equal to the number of hydrogen atoms that are attached to the carbon atoms adjacent to the double bond.
Note:
Tertiary alcohols are not oxidised into carbonyl compounds or acids by mild oxidising agents such as chromic oxide. When subjected to strong oxidising agents such as potassium permanganate, they convert into acids with lower number of carbon atoms.
The heated copper process which is described above is an industrial one, and is seldom used in laboratories.
Complete step by step answer:
Let us first know about the reaction that is mentioned in the question. Generally when primary or secondary alcohol vapours are passed over heated copper at $300{}^\circ C$ then dehydrogenation or in other words oxidation takes place. It converts the primary alcohol into aldehyde and the secondary one into ketone. The reaction is as below:
- Primary alcohol

- Secondary alcohol

This is not the case with tertiary alcohols as they are difficult to oxidise. In their case, dehydration takes place rather than dehydrogenation. The dehydration takes a hydroxyl and hydrogen atom from adjacent carbons, which results in the formation of a double bond. The reaction is as follows:

As you can see the tertiary butyl alcohol has been dehydrated into an alkene.
So the answer to the above question is option (C) $\text{1-butene}$ is formed.
Additional information:
The formation of the double bond takes place in such a way as to ensure maximum number of hyperconjugative structures. An example is given below:

The product will only be “A” because the number of hyperconjugative structures is $6$while that in “B” is $5$. Number of hyperconjugative structures is equal to the number of hydrogen atoms that are attached to the carbon atoms adjacent to the double bond.
Note:
Tertiary alcohols are not oxidised into carbonyl compounds or acids by mild oxidising agents such as chromic oxide. When subjected to strong oxidising agents such as potassium permanganate, they convert into acids with lower number of carbon atoms.
The heated copper process which is described above is an industrial one, and is seldom used in laboratories.
Recently Updated Pages
Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 6th Shift 2) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Convert chloro benzene to phenol class 12 chemistry JEE_Main

In order to convert Aniline into chlorobenzene the class 12 chemistry JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

NCERT Solutions for Class 12 Chemistry Chapter 7 Alcohol Phenol and Ether

NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

Solutions Class 12 Notes: CBSE Chemistry Chapter 1

Biomolecules Class 12 Notes: CBSE Chemistry Chapter 10
