Answer
Verified
112.5k+ views
Hint: The maximum line of sight is the maximum distance between the transmitting and the receiving antenna beyond which they would no longer be able to send or receive signals from one another. The curvature of the earth is what causes the distance to be finite i.e. a flat earth would have no maximum line of sight.
Formula used: In this solution we will be using the following formula;
\[hy{p^2} = op{p^2} + ad{j^2}\] where \[hyp\] is the hypotenuse of a right angled triangle, \[opp\] is the opposite side and \[adj\] is the adjacent side
Complete Step-by-Step Solution:
We shall draw two antennae on the surface of a round earth as shown in the figure
The maximum line of sight by diagram is given by
\[S = {x_t} + {x_r}\]
From Pythagoras theorem which states that
\[hy{p^2} = op{p^2} + ad{j^2}\] where \[hyp\] is the hypotenuse of a right angled triangle, \[opp\] is the opposite side and \[adj\] is the adjacent side
Hence,
\[{\left( {R + {h_t}} \right)^2} = {R^2} + x_t^2\]
\[ \Rightarrow x_t^2 = {\left( {R + {h_t}} \right)^2} - {R^2}\]
By opening the bracket and subtracting in the right hand side, we have
\[x_t^2 = {R^2} + {h_t}^2 + 2{h_t}R - {R^2}\]
\[ \Rightarrow x_t^2 = {h_t}^2 + 2{h_t}R\]
Now, if the height of the transmission antennae is taken to be small with respect to the radius of the earth, then the square of the height can be dropped as in
For \[{h_t} < < R\]. Then \[{h_t}^2 + 2{h_t}R = 2{h_t}R\].
Then the transmission antennae height can be given as
\[x_t^2 = 2{h_t}R\],
By finding the square root of both sides, we have
\[{x_t} = \sqrt {2{h_t}R} \]
Similarly, for the receiving antennae, we have that
\[{x_r} = \sqrt {2{h_R}R} \].
Then, the maximum line of sight is given by
\[S = {x_t} + {x_r} = \sqrt {2{h_t}R} + \sqrt {2{h_R}R} \]
Note: For clarity, the dropping of the square of the height can be justified through the following analysis; The equation \[{h_t}^2 + 2{h_t}R\] can be written as \[{R^2}\left( {\dfrac{{{h^2}}}{{{R^2}}} + \dfrac{{2h}}{R}} \right)\], now since, the height is small relative to the radius of the earth, then \[\dfrac{h}{R} < < 0\]. Now, from maths, we observe that when a number is less than zero, then the square of the number is even far less than zero. Hence, the first term in the bracket \[{\left( {\dfrac{h}{R}} \right)^2} \to 0\] and hence can be neglected. If we multiply \[{R^2}\], we have
\[{R^2}\left( {0 + \dfrac{{2{h_R}}}{R}} \right)\]
\[ \Rightarrow 2hR\]
Formula used: In this solution we will be using the following formula;
\[hy{p^2} = op{p^2} + ad{j^2}\] where \[hyp\] is the hypotenuse of a right angled triangle, \[opp\] is the opposite side and \[adj\] is the adjacent side
Complete Step-by-Step Solution:
We shall draw two antennae on the surface of a round earth as shown in the figure
The maximum line of sight by diagram is given by
\[S = {x_t} + {x_r}\]
From Pythagoras theorem which states that
\[hy{p^2} = op{p^2} + ad{j^2}\] where \[hyp\] is the hypotenuse of a right angled triangle, \[opp\] is the opposite side and \[adj\] is the adjacent side
Hence,
\[{\left( {R + {h_t}} \right)^2} = {R^2} + x_t^2\]
\[ \Rightarrow x_t^2 = {\left( {R + {h_t}} \right)^2} - {R^2}\]
By opening the bracket and subtracting in the right hand side, we have
\[x_t^2 = {R^2} + {h_t}^2 + 2{h_t}R - {R^2}\]
\[ \Rightarrow x_t^2 = {h_t}^2 + 2{h_t}R\]
Now, if the height of the transmission antennae is taken to be small with respect to the radius of the earth, then the square of the height can be dropped as in
For \[{h_t} < < R\]. Then \[{h_t}^2 + 2{h_t}R = 2{h_t}R\].
Then the transmission antennae height can be given as
\[x_t^2 = 2{h_t}R\],
By finding the square root of both sides, we have
\[{x_t} = \sqrt {2{h_t}R} \]
Similarly, for the receiving antennae, we have that
\[{x_r} = \sqrt {2{h_R}R} \].
Then, the maximum line of sight is given by
\[S = {x_t} + {x_r} = \sqrt {2{h_t}R} + \sqrt {2{h_R}R} \]
Note: For clarity, the dropping of the square of the height can be justified through the following analysis; The equation \[{h_t}^2 + 2{h_t}R\] can be written as \[{R^2}\left( {\dfrac{{{h^2}}}{{{R^2}}} + \dfrac{{2h}}{R}} \right)\], now since, the height is small relative to the radius of the earth, then \[\dfrac{h}{R} < < 0\]. Now, from maths, we observe that when a number is less than zero, then the square of the number is even far less than zero. Hence, the first term in the bracket \[{\left( {\dfrac{h}{R}} \right)^2} \to 0\] and hence can be neglected. If we multiply \[{R^2}\], we have
\[{R^2}\left( {0 + \dfrac{{2{h_R}}}{R}} \right)\]
\[ \Rightarrow 2hR\]
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking