If intensity of incident light is increased in PEE (Photoelectric effect experiment) then which of the following is true
A. Maximum K.E of the ejected electron will increase
B. Work function will remain unchanged
C. Stopping potential will decrease
D. Maximum K.E of the ejected electron will decrease
Answer
Verified
123k+ views
Hint: In order to answer this question, we have to use the results of the photoelectric effect experiment. In this experiment, when we incident the light of a certain frequency which is greater than the threshold frequency then the photoelectrons are emitted.
Complete step by step solution:
If the intensity of the incident light is increased then the photoelectric current increases because the number of photons increases in incident light. If the total number of incident photons increases, then the number of emitted photoelectrons also increases, as a result, the photoelectric current increases.
The greater the intensity of incident radiation, the larger the number of incident photons and hence larger the number of electrons ejected from the metal surface. Therefore, if the incident radiation’s intensity will increase then the total number of electrons throughout will also increase.
With the increase in the intensity of light photoelectric current increases, but the kinetic energy of the ejected electron, stopping potential as well as work function remains unchanged. For different materials, the work function will also be different and the kinetic energy of ejected electrons depends on the energy of the incident radiation and is independent of the intensity of incident radiation.
Hence option B is the correct answer.
Note: The work function is defined as the minimum amount of energy required to induce photoemission of electrons from a metal surface. Since the emission of photoelectrons is directly proportional to the intensity of the incident light, the photocurrent increases with the intensity of light. The light intensity relates to the number of photons incident on the metal surface per unit of time. At low light intensity, the photoelectric effect still occurs.
Complete step by step solution:
If the intensity of the incident light is increased then the photoelectric current increases because the number of photons increases in incident light. If the total number of incident photons increases, then the number of emitted photoelectrons also increases, as a result, the photoelectric current increases.
The greater the intensity of incident radiation, the larger the number of incident photons and hence larger the number of electrons ejected from the metal surface. Therefore, if the incident radiation’s intensity will increase then the total number of electrons throughout will also increase.
With the increase in the intensity of light photoelectric current increases, but the kinetic energy of the ejected electron, stopping potential as well as work function remains unchanged. For different materials, the work function will also be different and the kinetic energy of ejected electrons depends on the energy of the incident radiation and is independent of the intensity of incident radiation.
Hence option B is the correct answer.
Note: The work function is defined as the minimum amount of energy required to induce photoemission of electrons from a metal surface. Since the emission of photoelectrons is directly proportional to the intensity of the incident light, the photocurrent increases with the intensity of light. The light intensity relates to the number of photons incident on the metal surface per unit of time. At low light intensity, the photoelectric effect still occurs.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
Electric field due to uniformly charged sphere class 12 physics JEE_Main