
If R and L represent the resistance and inductance respectively, then give the dimension of $\dfrac{L}{R}$ is:
A) \[{M^0}{L^0}{T^{ - 1}}\]
B) \[{M^0}{L^1}{T^0}\]
C) \[{M^0}{L^0}{T^1}\]
D) Cannot be represented in terms of $M,L$ and $T$
Answer
133.5k+ views
Hint: Although known that the time constant of an $L - R$ circuit is given by $\tau = \dfrac{L}{R}$, but before we use that approach, it is important to find the dimensions of the individual elements and combining them to find the dimension of $\dfrac{L}{R}.$
Formulae used:
$E = \dfrac{1}{2}L{i^2}$
Where $E$ is the energy stored in an $L - R$ circuit, $L$ is the inductance and $i$ is the current in the circuit and is dimensionally represented by $A$.
$E = {i^2}RT$
Where $E$ is the energy stored in an $L - R$ circuit, $R$ is the resistance, $T$ is the time and $i$ is the current in the circuit and is dimensionally represented by $A$.
$\tau = \dfrac{L}{R}$
Where $\tau $ is the time constant of an $L - R$ circuit, $R$ is the resistance of the circuit and $L$ is the inductance of the circuit.
Complete step by step solution:
To find the dimensions of inductance, we will first find an equation that equates inductance with a quantity whose dimensions are well known and easily calculated, that is,
$E = \dfrac{1}{2}L{i^2}$
Where $E$ is the energy stored in an $L - R$ circuit, $L$ is the inductance and $i$ is the current in the circuit and is dimensionally represented by $A$ . Therefore,
$ \Rightarrow L = \dfrac{{2E}}{{{i^2}}}$
Since dimensions of $E = ML{T^{ - 2}}$ and dimension of $i = A$ , therefore the dimensional formula of inductance is ,
\[L = \dfrac{{M{\text{ }}L\;{T^ - }^2\;}}{{{A^2}}} = M{\text{ }}L\;{T^ - }^2\;{A^ - }^2\] $...\left( 1 \right)$
Similarly in the case of the resistance of the circuit
$E = {i^2}RT$
Where $E$ is the energy stored in an $L - R$ circuit, $R$ is the resistance, $T$ is the time and $i$ is the current in the circuit and is dimensionally represented by $A$ . Therefore,
$ \Rightarrow R = \dfrac{E}{{{i^2}t}}$
Since dimensions of $E = ML{T^{ - 2}}$ and dimension of $i = A$ , therefore the dimensional formula of inductance is ,
$R = \dfrac{{ML{T^{ - 2}}}}{{{A^2}T}} = ML{T^{ - 3}}{A^{ - 2}}$
To find the dimensional formula of \[\dfrac{L}{R}\] we simply multiply the individual dimensions, that is,
$ \Rightarrow \dim \left( {\dfrac{L}{R}} \right) = \dfrac{{ML{T^ - }^2{A^ - }^2}}{{ML{T^{ - 3}}{A^{ - 2}}}}$
$ \Rightarrow \dim \left( {\dfrac{L}{R}} \right) = {M^0}{L^0}{T^1}{A^0}$
$ \Rightarrow \dim \left( {\dfrac{L}{R}} \right) = T$
Therefore, the dimension of \[\dfrac{L}{R}\] is dependent solely on time.
Alternatively:
Since the time constant, $\tau = \dfrac{L}{R}$, therefore you can tell that the dimensions of \[\dfrac{L}{R}\] will be similar to that of $\tau $ as dimensional equality is only possible if the dimensions of both quantities are equal.
Therefore the dimensions of \[\dfrac{L}{R}\] is $T$.
Note: Dimensional analysis questions usually have multiple approaches possible, depending entirely on the ease of your application and knowledge. Dimensions of a particular quantity can be solved in multiple ways by using the right formula to relate that quantity to those quantities whose dimensions you’re sure of. In this question, you could’ve further expanded the formula or Resistance and Inductance to get to the four basic units: mass $\left( M \right)$ , time $\left( T \right)$ , length $(L)$ and current $\left( A \right)$ .
Formulae used:
$E = \dfrac{1}{2}L{i^2}$
Where $E$ is the energy stored in an $L - R$ circuit, $L$ is the inductance and $i$ is the current in the circuit and is dimensionally represented by $A$.
$E = {i^2}RT$
Where $E$ is the energy stored in an $L - R$ circuit, $R$ is the resistance, $T$ is the time and $i$ is the current in the circuit and is dimensionally represented by $A$.
$\tau = \dfrac{L}{R}$
Where $\tau $ is the time constant of an $L - R$ circuit, $R$ is the resistance of the circuit and $L$ is the inductance of the circuit.
Complete step by step solution:
To find the dimensions of inductance, we will first find an equation that equates inductance with a quantity whose dimensions are well known and easily calculated, that is,
$E = \dfrac{1}{2}L{i^2}$
Where $E$ is the energy stored in an $L - R$ circuit, $L$ is the inductance and $i$ is the current in the circuit and is dimensionally represented by $A$ . Therefore,
$ \Rightarrow L = \dfrac{{2E}}{{{i^2}}}$
Since dimensions of $E = ML{T^{ - 2}}$ and dimension of $i = A$ , therefore the dimensional formula of inductance is ,
\[L = \dfrac{{M{\text{ }}L\;{T^ - }^2\;}}{{{A^2}}} = M{\text{ }}L\;{T^ - }^2\;{A^ - }^2\] $...\left( 1 \right)$
Similarly in the case of the resistance of the circuit
$E = {i^2}RT$
Where $E$ is the energy stored in an $L - R$ circuit, $R$ is the resistance, $T$ is the time and $i$ is the current in the circuit and is dimensionally represented by $A$ . Therefore,
$ \Rightarrow R = \dfrac{E}{{{i^2}t}}$
Since dimensions of $E = ML{T^{ - 2}}$ and dimension of $i = A$ , therefore the dimensional formula of inductance is ,
$R = \dfrac{{ML{T^{ - 2}}}}{{{A^2}T}} = ML{T^{ - 3}}{A^{ - 2}}$
To find the dimensional formula of \[\dfrac{L}{R}\] we simply multiply the individual dimensions, that is,
$ \Rightarrow \dim \left( {\dfrac{L}{R}} \right) = \dfrac{{ML{T^ - }^2{A^ - }^2}}{{ML{T^{ - 3}}{A^{ - 2}}}}$
$ \Rightarrow \dim \left( {\dfrac{L}{R}} \right) = {M^0}{L^0}{T^1}{A^0}$
$ \Rightarrow \dim \left( {\dfrac{L}{R}} \right) = T$
Therefore, the dimension of \[\dfrac{L}{R}\] is dependent solely on time.
Alternatively:
Since the time constant, $\tau = \dfrac{L}{R}$, therefore you can tell that the dimensions of \[\dfrac{L}{R}\] will be similar to that of $\tau $ as dimensional equality is only possible if the dimensions of both quantities are equal.
Therefore the dimensions of \[\dfrac{L}{R}\] is $T$.
Note: Dimensional analysis questions usually have multiple approaches possible, depending entirely on the ease of your application and knowledge. Dimensions of a particular quantity can be solved in multiple ways by using the right formula to relate that quantity to those quantities whose dimensions you’re sure of. In this question, you could’ve further expanded the formula or Resistance and Inductance to get to the four basic units: mass $\left( M \right)$ , time $\left( T \right)$ , length $(L)$ and current $\left( A \right)$ .
Recently Updated Pages
Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 11th Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Wheatstone Bridge for JEE Main Physics 2025

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Current Loop as Magnetic Dipole and Its Derivation for JEE

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

Write the value of charge in coulombs on the nucleus class 12 physics JEE_Main

Other Pages
Diffraction of Light - Young’s Single Slit Experiment

In Bohrs model of the hydrogen atom the radius of the class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Clemmenson and Wolff Kishner Reductions for JEE

Sir C V Raman won the Nobel Prize in which year A 1928 class 12 physics JEE_Main

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now
