Answer
Verified
98.1k+ views
Hint:This question is from electricity. The problem is solved by the Electric Current concept. Apply the Electric Current equation to find the number of electrons delivered by the accelerator per pulse.
Formula used:
i) $I = \dfrac{q}{t}$
Where,
I = Current
q = Charge
t = time
ii) $n = \dfrac{q}{e}$
Where,
n = Number of electrons
q = Charge
e = Charge of an electron
Complete answer:
$I = \dfrac{q}{t}$
I = 25 mA = 0.25 A
t = 200 ns = $2 \times {10^{ - 7}}s$
The charge in a pulse will be,
$q = It$
$q = 0.25 \times 2 \times {10^{ - 7}} = 5 \times {10^{ - 8}}C$
The number of electrons delivered by the accelerator per pulse is given below.
$n = \dfrac{q}{e}$
$n = \dfrac{{5 \times {{10}^8}}}{{1.6 \times {{10}^{ - 19}}}} = 3.13 \times {10^{11}}$
Hence, the correct option is Option C) $3.13 \times {10^{10}}$.
Additional Information:
The electric current is a flow of charged particles (electrons) through wires and other components.
Electric current is the rate of flow of charge.
Electric current flows from the negative terminal of the cell to the positive terminal.
The conventional direction of electric current is taken as opposite to the direction of the flow of charge (electrons).
Note: The S.I unit of charge is coulomb and the S.I unit of electric current is ampere (coulomb per second).
Formula used:
i) $I = \dfrac{q}{t}$
Where,
I = Current
q = Charge
t = time
ii) $n = \dfrac{q}{e}$
Where,
n = Number of electrons
q = Charge
e = Charge of an electron
Complete answer:
$I = \dfrac{q}{t}$
I = 25 mA = 0.25 A
t = 200 ns = $2 \times {10^{ - 7}}s$
The charge in a pulse will be,
$q = It$
$q = 0.25 \times 2 \times {10^{ - 7}} = 5 \times {10^{ - 8}}C$
The number of electrons delivered by the accelerator per pulse is given below.
$n = \dfrac{q}{e}$
$n = \dfrac{{5 \times {{10}^8}}}{{1.6 \times {{10}^{ - 19}}}} = 3.13 \times {10^{11}}$
Hence, the correct option is Option C) $3.13 \times {10^{10}}$.
Additional Information:
The electric current is a flow of charged particles (electrons) through wires and other components.
Electric current is the rate of flow of charge.
Electric current flows from the negative terminal of the cell to the positive terminal.
The conventional direction of electric current is taken as opposite to the direction of the flow of charge (electrons).
Note: The S.I unit of charge is coulomb and the S.I unit of electric current is ampere (coulomb per second).
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
Calculate CFSE of the following complex FeCN64 A 04Delta class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
The focal length of a thin biconvex lens is 20cm When class 12 physics JEE_Main
If two bulbs of 25W and 100W rated at 200V are connected class 12 physics JEE_Main
A ball of mass 05 Kg moving with a velocity of 2ms class 11 physics JEE_Main