Answer
Verified
114.9k+ views
Hint: Before proceeding with our solution, let us discuss the various terms we will use. Alpha decay is a radioactive decay in which a nucleus emits an alpha particle (which is nothing but an ionised helium nucleus) and thereby transforms into a different atomic nucleus, with a mass number that is reduced by four and an atomic number that is reduced by two. The Q value for a reaction is the amount of energy absorbed or released during the nuclear reaction and can be determined from the masses of reactants and products. Q values affect reaction rates.
Formula Used:
\[{{K}_{\alpha }}=\dfrac{{{m}_{d}}}{{{m}_{\alpha }}+{{m}_{d}}}Q\]
Complete step by step solution:
As we know that alpha decay causes changes in the atomic number and mass number of the mother nucleus, mathematically shown as
\[{}_{x}{{A}^{Y}}\to {}_{X-2}{{B}^{Y-4}}+{}_{2}H{{e}^{4}}\] where \[A\] is the mother nucleus, \[B\] is the daughter nucleus, \[He\] is the alpha particle and the subscripts denote the atomic numbers of the respective nuclei and the superscripts denote the mass number of the respective nuclei.
We know the relation between the kinetic energy of the alpha particle and the total energy of the reaction is given as
\[{{K}_{\alpha }}=\dfrac{{{m}_{d}}}{{{m}_{\alpha }}+{{m}_{d}}}Q\] where \[{{K}_{\alpha }}\] is the kinetic energy of the alpha particle, \[Q\] is the total energy change of the reaction, \[{{m}_{d}}\] is the mass of the daughter nucleus and \[{{m}_{\alpha }}\] is the mass of the alpha particle.
We have been given that kinetic energy of the alpha particle \[({{K}_{\alpha }})=48MeV\]
Total energy change in the reaction \[(Q)=50MeV\]
From the reaction of the alpha decay of a mother nucleus given above, we can say that
Mass of the daughter nucleus \[({{m}_{d}})=X-4\]
We know that mass of an alpha particle \[({{m}_{\alpha }})=4\]
Substituting the values given to us, we get
\[\begin{align}
& 48=\dfrac{X-4}{X-4+4}\times 50 \\
& \Rightarrow \dfrac{X-4}{X}=\dfrac{48}{50} \\
\end{align}\]
Cross multiplying, we get
\[\begin{align}
& 50X-200=48X \\
& \Rightarrow 2X=200 \\
& \Rightarrow X=100 \\
\end{align}\]
But we have to find the value of \[X/25\] which will be \[100/25=4\]
Hence option (B) is the correct answer.
Note: We were not provided with the mass of the daughter nucleus; we had to find it using the mass of the mother nucleus and the mass of an alpha particle. Also, keep in mind that we were asked the value of the mass of the mother nucleus divided by four and not the mass itself. Students almost always choose the wrong option in such cases, even after getting the right answer.
Formula Used:
\[{{K}_{\alpha }}=\dfrac{{{m}_{d}}}{{{m}_{\alpha }}+{{m}_{d}}}Q\]
Complete step by step solution:
As we know that alpha decay causes changes in the atomic number and mass number of the mother nucleus, mathematically shown as
\[{}_{x}{{A}^{Y}}\to {}_{X-2}{{B}^{Y-4}}+{}_{2}H{{e}^{4}}\] where \[A\] is the mother nucleus, \[B\] is the daughter nucleus, \[He\] is the alpha particle and the subscripts denote the atomic numbers of the respective nuclei and the superscripts denote the mass number of the respective nuclei.
We know the relation between the kinetic energy of the alpha particle and the total energy of the reaction is given as
\[{{K}_{\alpha }}=\dfrac{{{m}_{d}}}{{{m}_{\alpha }}+{{m}_{d}}}Q\] where \[{{K}_{\alpha }}\] is the kinetic energy of the alpha particle, \[Q\] is the total energy change of the reaction, \[{{m}_{d}}\] is the mass of the daughter nucleus and \[{{m}_{\alpha }}\] is the mass of the alpha particle.
We have been given that kinetic energy of the alpha particle \[({{K}_{\alpha }})=48MeV\]
Total energy change in the reaction \[(Q)=50MeV\]
From the reaction of the alpha decay of a mother nucleus given above, we can say that
Mass of the daughter nucleus \[({{m}_{d}})=X-4\]
We know that mass of an alpha particle \[({{m}_{\alpha }})=4\]
Substituting the values given to us, we get
\[\begin{align}
& 48=\dfrac{X-4}{X-4+4}\times 50 \\
& \Rightarrow \dfrac{X-4}{X}=\dfrac{48}{50} \\
\end{align}\]
Cross multiplying, we get
\[\begin{align}
& 50X-200=48X \\
& \Rightarrow 2X=200 \\
& \Rightarrow X=100 \\
\end{align}\]
But we have to find the value of \[X/25\] which will be \[100/25=4\]
Hence option (B) is the correct answer.
Note: We were not provided with the mass of the daughter nucleus; we had to find it using the mass of the mother nucleus and the mass of an alpha particle. Also, keep in mind that we were asked the value of the mass of the mother nucleus divided by four and not the mass itself. Students almost always choose the wrong option in such cases, even after getting the right answer.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
Electric field due to uniformly charged sphere class 12 physics JEE_Main