Answer
Verified
99.9k+ views
Hint: When the net force acting on the body is zero then the body moves with constant velocity and this velocity is called the terminal velocity. When a body is moving inside the fluid then the fluid offers viscous resistive force which tries to resist the motion of the body. At terminal velocity the resultant of the resistive force and the weight of the body is zero.
Formula used:
\[v = \sqrt {{u^2} + 2gh} \], here v is the final velocity of the body moving under the influence of gravity with initial velocity u and after travelling the height h.
Complete answer:
As the viscosity of the air is ignored, so when the ball is in air then it moves with constant acceleration under the influence of gravitational force due to earth. So, we can use the equation of motion to find the velocity of the ball just before entering the water and after travelling the height h in the air.
When a body falls, then the initial velocity is assumed to be zero,
\[u = 0m/s\]
So, after travelling the height h in air, the velocity of the ball will be obtained using the equation of motion,
\[v = \sqrt {{0^2} + 2gh} \]
\[v = \sqrt {2gh} \]
Hence, the velocity of the ball at the surface of water is \[\sqrt {2gh} \].
It is given that the terminal velocity of the spherical ball inside the water is same as the velocity of the ball at the surface of the water.
\[{v_T} = v\]
\[{v_T} = \sqrt {2gh} \]
From Stokes law, we know that the terminal velocity is given as,
\[{v_T} = \dfrac{{2{r^2}\left( {\rho - \sigma } \right)}}{{9\eta }}\], here \[{v_T}\]is the terminal velocity of the spherical ball of radius r and of density \[\rho \]in a fluid of density \[\sigma \]and viscosity \[\eta \]
On equating the expression of the terminal velocity,
\[\sqrt {2gh} = \dfrac{{2{r^2}\left( {\rho - \sigma } \right)}}{{9\eta }}\]
On squaring both the sides, we get
\[2gh = {\left( {\dfrac{{2{r^2}\left( {\rho - \sigma } \right)}}{{9\eta }}} \right)^2}\]
\[h = \dfrac{{4{r^4}}}{{162g}}{\left( {\dfrac{{\rho - \sigma }}{{9\eta }}} \right)^2}\]
\[h = {r^4}\left[ {\dfrac{2}{{81g}}{{\left( {\dfrac{{\rho - \sigma }}{{9\eta }}} \right)}^2}} \right]\]
\[h \propto {r^4}\]
Hence, the height of fall of the spherical ball is proportional to \[{r^4}\]
Therefore, the correct option is (1).
Note: We should assume the ball to be perfectly spherical to use the Stokes law, The viscous force by the fluid acts in the direction opposite to the motion of the body inside the fluid and equal in magnitude with the weight of the body so that the net force acting on the body becomes zero and the terminal velocity is attained.
Formula used:
\[v = \sqrt {{u^2} + 2gh} \], here v is the final velocity of the body moving under the influence of gravity with initial velocity u and after travelling the height h.
Complete answer:
As the viscosity of the air is ignored, so when the ball is in air then it moves with constant acceleration under the influence of gravitational force due to earth. So, we can use the equation of motion to find the velocity of the ball just before entering the water and after travelling the height h in the air.
When a body falls, then the initial velocity is assumed to be zero,
\[u = 0m/s\]
So, after travelling the height h in air, the velocity of the ball will be obtained using the equation of motion,
\[v = \sqrt {{0^2} + 2gh} \]
\[v = \sqrt {2gh} \]
Hence, the velocity of the ball at the surface of water is \[\sqrt {2gh} \].
It is given that the terminal velocity of the spherical ball inside the water is same as the velocity of the ball at the surface of the water.
\[{v_T} = v\]
\[{v_T} = \sqrt {2gh} \]
From Stokes law, we know that the terminal velocity is given as,
\[{v_T} = \dfrac{{2{r^2}\left( {\rho - \sigma } \right)}}{{9\eta }}\], here \[{v_T}\]is the terminal velocity of the spherical ball of radius r and of density \[\rho \]in a fluid of density \[\sigma \]and viscosity \[\eta \]
On equating the expression of the terminal velocity,
\[\sqrt {2gh} = \dfrac{{2{r^2}\left( {\rho - \sigma } \right)}}{{9\eta }}\]
On squaring both the sides, we get
\[2gh = {\left( {\dfrac{{2{r^2}\left( {\rho - \sigma } \right)}}{{9\eta }}} \right)^2}\]
\[h = \dfrac{{4{r^4}}}{{162g}}{\left( {\dfrac{{\rho - \sigma }}{{9\eta }}} \right)^2}\]
\[h = {r^4}\left[ {\dfrac{2}{{81g}}{{\left( {\dfrac{{\rho - \sigma }}{{9\eta }}} \right)}^2}} \right]\]
\[h \propto {r^4}\]
Hence, the height of fall of the spherical ball is proportional to \[{r^4}\]
Therefore, the correct option is (1).
Note: We should assume the ball to be perfectly spherical to use the Stokes law, The viscous force by the fluid acts in the direction opposite to the motion of the body inside the fluid and equal in magnitude with the weight of the body so that the net force acting on the body becomes zero and the terminal velocity is attained.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main