
In Carnot engine efficiency is \[40\% \], when the temperature of hot reservoirs is \[T\]. For efficiency \[50\% \] what will be the temperature of the hot reservoir?
${\text{A}}.{\text{ }}\dfrac{T}{5}$
${\text{B}}{\text{. }}\dfrac{{2T}}{5}$
${\text{C}}{\text{. 6T}}$
${\text{D}}{\text{. }}\dfrac{{6T}}{5}$
Answer
135.3k+ views
Hint: The efficiency of $\eta $is equal to the work done \[\left( W \right)\] divided by the heat input \[\left( Q \right)\] .First we have to use the carnot engine efficiency value to find the values by using the formula. Also we have to use the given data to find the required solution. We can find out the value is the temperature of hot reservoir \[\left( T \right)\]
Formula Used:
The efficiency,\[\eta = \dfrac{{{\text{work done}}}}{{{\text{heat input}}}} = \dfrac{W}{Q}\]
$\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
Complete step by step answer:
The efficiency of $\eta $ is equal to Work done is divided by heat in put,
Work done is \[W\], and heat in put is\[Q\] ,
The efficiency,\[\eta = \dfrac{{{\text{work done}}}}{{{\text{heat input}}}} = \dfrac{W}{Q}\]
$\implies \eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
Where,
\[{T_2}\]= Temperature of sink, and
$\implies {T_1}$= temperature of hot reservoir
Substitute the values, so we can write it as,
$\implies \dfrac{{40}}{{100}} = 1 - \dfrac{{{T_1}}}{{{T_2}}}$
Replacing the term and we can write it as,
$\implies \dfrac{{{T_2}}}{{{T_1}}} = 1 - \dfrac{{40}}{{100}}$
Taking LCM as RHS and we get,
$\implies \dfrac{{{T_2}}}{{{T_1}}} = \dfrac{{100 - 40}}{{100}}$
On subtracting we get,
$\implies \dfrac{{{T_2}}}{{{T_1}}} = \dfrac{{60}}{{100}}$
On dividing the terms we get,
$\implies \dfrac{{{T_2}}}{{{T_1}}} = 0.6$
Taking the cross multiplication we get,
$ \Rightarrow {T_2} = 0.6{T_1}$
Now, for efficiency \[50\% \]
So we can apply the formula and we get,
$\implies \dfrac{{50}}{{100}} = 1 - \dfrac{{{T_2}}}{{{T_1}^\prime }}$
On dividing the term we get,
$ \Rightarrow 0.5 = 1 - \dfrac{{{T_2}}}{{{T_1}^\prime }}$
Putting the value for ${T_2}$ and we get,
$\dfrac{{0.6{T_1}}}{{{T_1}^\prime }} = 0.5$
Taking the term as replace we get,
$\dfrac{{0.6}}{{0.5}}{T_1} = {T_1}^\prime $
On simplification we get,
$ \Rightarrow {T_1}^\prime = \dfrac{6}{5}{T_1}$
Hence, the correct answer is option \[D\].
Note: A thermodynamic cycle is said to have occurred, when a system is taken throughout a series of different states and finally returned to its initial state. A Carnot principle states that the efficiency of an irreversible heat engine is always less than the efficiency of a reversible one operating between the same two reservoirs. Also it is used only for cyclical devices like heat engines.
Formula Used:
The efficiency,\[\eta = \dfrac{{{\text{work done}}}}{{{\text{heat input}}}} = \dfrac{W}{Q}\]
$\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
Complete step by step answer:
The efficiency of $\eta $ is equal to Work done is divided by heat in put,
Work done is \[W\], and heat in put is\[Q\] ,
The efficiency,\[\eta = \dfrac{{{\text{work done}}}}{{{\text{heat input}}}} = \dfrac{W}{Q}\]
$\implies \eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
Where,
\[{T_2}\]= Temperature of sink, and
$\implies {T_1}$= temperature of hot reservoir
Substitute the values, so we can write it as,
$\implies \dfrac{{40}}{{100}} = 1 - \dfrac{{{T_1}}}{{{T_2}}}$
Replacing the term and we can write it as,
$\implies \dfrac{{{T_2}}}{{{T_1}}} = 1 - \dfrac{{40}}{{100}}$
Taking LCM as RHS and we get,
$\implies \dfrac{{{T_2}}}{{{T_1}}} = \dfrac{{100 - 40}}{{100}}$
On subtracting we get,
$\implies \dfrac{{{T_2}}}{{{T_1}}} = \dfrac{{60}}{{100}}$
On dividing the terms we get,
$\implies \dfrac{{{T_2}}}{{{T_1}}} = 0.6$
Taking the cross multiplication we get,
$ \Rightarrow {T_2} = 0.6{T_1}$
Now, for efficiency \[50\% \]
So we can apply the formula and we get,
$\implies \dfrac{{50}}{{100}} = 1 - \dfrac{{{T_2}}}{{{T_1}^\prime }}$
On dividing the term we get,
$ \Rightarrow 0.5 = 1 - \dfrac{{{T_2}}}{{{T_1}^\prime }}$
Putting the value for ${T_2}$ and we get,
$\dfrac{{0.6{T_1}}}{{{T_1}^\prime }} = 0.5$
Taking the term as replace we get,
$\dfrac{{0.6}}{{0.5}}{T_1} = {T_1}^\prime $
On simplification we get,
$ \Rightarrow {T_1}^\prime = \dfrac{6}{5}{T_1}$
Hence, the correct answer is option \[D\].
Note: A thermodynamic cycle is said to have occurred, when a system is taken throughout a series of different states and finally returned to its initial state. A Carnot principle states that the efficiency of an irreversible heat engine is always less than the efficiency of a reversible one operating between the same two reservoirs. Also it is used only for cyclical devices like heat engines.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

What are examples of Chemical Properties class 10 chemistry JEE_Main

JEE Main 2025 Session 2 Schedule Released – Check Important Details Here!

JEE Main 2025 Session 2 Admit Card – Release Date & Direct Download Link

JEE Main 2025 Session 2 Registration (Closed) - Link, Last Date & Fees

JEE Mains Result 2025 NTA NIC – Check Your Score Now!

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

A body is falling from a height h After it has fallen class 11 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Elastic Collisions in One Dimension - JEE Important Topic

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion In A Plane: Line Class 11 Notes: CBSE Physics Chapter 3
