Answer
Verified
99.9k+ views
Hint: In the question the input voltage and output voltage of the step-up transformer is given. Substituting the known values in the equation of turns ratio we get the value of the number of turns of secondary to primary coils.
Formula used:
The expression for finding the number of turns in the coil is,
$\dfrac{{{i_p}}}{{{i_s}}} = \,\dfrac{{{v_p}}}{{{v_s}}}$
Where ${i_p}$ be the number of turns in the primary coil, ${i_s}$be the number of turns in the secondary coil, ${v_p}$ be the potential of primary voltage and ${v_s}$ be the potential of secondary voltage.
Complete step by step solution:
Given that,
Potential of primary voltage ${v_p}\, = \,220\,V$
Potential of secondary voltage ${v_s}\, = \,11\,KV$
Convert the secondary voltage in terms of V, we get
Potential of secondary voltage ${v_s}\, = \,11000\,V$
Number of turns in the primary coil ${i_{p\,}}\, = \,?$
Number of turns in the secondary coil ${i_s}\, = \,?$
$\dfrac{{{i_p}}}{{{i_s}}} = \,\dfrac{{{v_p}}}{{{v_s}}}...........\left( 1 \right)$
Substitute the known values in the equation $\left( 1 \right)$
$\dfrac{{{i_p}}}{{{i_s}}} = \,\dfrac{{220}}{{11000}}$
Simplify the above equation we get
$\dfrac{{{i_p}}}{{{i_s}}} = \,\dfrac{1}{{50}}$
Convert the above equation in terms of secondary to primary coils, we get
$\dfrac{{{i_s}}}{{{i_p}}} = \,\dfrac{{50}}{1}$
Therefore. the number of turns of the secondary to primary coils is $50:1$
Hence, from the above options, option C is correct.
Note: In the question, step up transformer is used. It states that the voltage increases the voltage by decreasing the current. In the question we need to find the number of turns in the secondary to primary coil. So reciprocal the values we get the value of secondary to primary coils. we know that the power is proportional to the voltage and current. In the question we use the equation called ratio of transformation. This is also a turns ratio.
Formula used:
The expression for finding the number of turns in the coil is,
$\dfrac{{{i_p}}}{{{i_s}}} = \,\dfrac{{{v_p}}}{{{v_s}}}$
Where ${i_p}$ be the number of turns in the primary coil, ${i_s}$be the number of turns in the secondary coil, ${v_p}$ be the potential of primary voltage and ${v_s}$ be the potential of secondary voltage.
Complete step by step solution:
Given that,
Potential of primary voltage ${v_p}\, = \,220\,V$
Potential of secondary voltage ${v_s}\, = \,11\,KV$
Convert the secondary voltage in terms of V, we get
Potential of secondary voltage ${v_s}\, = \,11000\,V$
Number of turns in the primary coil ${i_{p\,}}\, = \,?$
Number of turns in the secondary coil ${i_s}\, = \,?$
$\dfrac{{{i_p}}}{{{i_s}}} = \,\dfrac{{{v_p}}}{{{v_s}}}...........\left( 1 \right)$
Substitute the known values in the equation $\left( 1 \right)$
$\dfrac{{{i_p}}}{{{i_s}}} = \,\dfrac{{220}}{{11000}}$
Simplify the above equation we get
$\dfrac{{{i_p}}}{{{i_s}}} = \,\dfrac{1}{{50}}$
Convert the above equation in terms of secondary to primary coils, we get
$\dfrac{{{i_s}}}{{{i_p}}} = \,\dfrac{{50}}{1}$
Therefore. the number of turns of the secondary to primary coils is $50:1$
Hence, from the above options, option C is correct.
Note: In the question, step up transformer is used. It states that the voltage increases the voltage by decreasing the current. In the question we need to find the number of turns in the secondary to primary coil. So reciprocal the values we get the value of secondary to primary coils. we know that the power is proportional to the voltage and current. In the question we use the equation called ratio of transformation. This is also a turns ratio.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
A series RLC circuit consists of an 8Omega resistor class 12 physics JEE_Main
The shape of XeF5 + ion is A Pentagonal B Octahedral class 11 chemistry JEE_Main
A block A slides over another block B which is placed class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Two billiard balls of the same size and mass are in class 11 physics JEE_Main
A tetracyanomethane B carbon dioxide C benzene and class 11 chemistry JEE_Main