
Magnifying power of an astronomical telescope is 'M.P'. If the focal length of objective is doubled, then the magnifying power for normal adjustment will become
(A) $2 \mathrm{M.P}$
(B) $\dfrac{\text { M.P }}{2}$
(C) $3 \mathrm{M.P}$
(D) $\dfrac{3 \mathrm{M.P}}{2}$
Answer
133.5k+ views
Hint: We know that magnification is the ability to make small objects seem larger, such as making a microscopic organism visible. Resolution is the ability to distinguish two objects from each other. When the image formed is virtual and erect, magnification is positive. And, when the image formed is real and inverted, magnification is negative. The underlying principle of a microscope is that lenses refract light which allows for magnification. Refraction occurs when light travels through an area of space that has a changing index of refraction.
Complete step by step answer
We know that the magnifying power is defined as the ratio between the dimensions of the image and the object. The process of magnification can occur in lenses, telescopes, microscopes and even in slide projectors. Simple magnifying lenses are biconvex - these lenses are thicker at the center than at the edges. The magnifying power, or extent to which the object being viewed appears enlarged, and the field of view, or size of the object that can be viewed, are related by the geometry of the optical system.
The magnifying power or M.P of the reflecting telescope is $\dfrac{\mathrm{f}_{0}}{\mathrm{f}_{\mathrm{e}}} .$
If the focal length of the eye-piece is halved, then its magnifying power $\mathrm{m}^{\prime}\left(\dfrac{\mathrm{f}_{0} \times 2}{\mathrm{f}_{\mathrm{e}}}\right)$ is 2 M.P.
So, the correct answer is option A.
Note: We know that virtual images are always located behind the mirror. Virtual images can be either upright or inverted. Virtual images can be magnified in size, reduced in size or the same size as the object. Virtual images can be formed by concave, convex and plane mirrors. Magnification is the ratio between the height of the object and the height of the image. In case of a virtual image, the height of the image, as well as the height of the object, carries a positive sign. Therefore, the magnification is positive in this case. A real image occurs where rays converge, whereas a virtual image occurs where rays only appear to converge. Real images can be produced by concave mirrors and converging lenses, only if the object is placed further away from the mirror/lens than the focal point and this real image is inverted.
Complete step by step answer
We know that the magnifying power is defined as the ratio between the dimensions of the image and the object. The process of magnification can occur in lenses, telescopes, microscopes and even in slide projectors. Simple magnifying lenses are biconvex - these lenses are thicker at the center than at the edges. The magnifying power, or extent to which the object being viewed appears enlarged, and the field of view, or size of the object that can be viewed, are related by the geometry of the optical system.
The magnifying power or M.P of the reflecting telescope is $\dfrac{\mathrm{f}_{0}}{\mathrm{f}_{\mathrm{e}}} .$
If the focal length of the eye-piece is halved, then its magnifying power $\mathrm{m}^{\prime}\left(\dfrac{\mathrm{f}_{0} \times 2}{\mathrm{f}_{\mathrm{e}}}\right)$ is 2 M.P.
So, the correct answer is option A.
Note: We know that virtual images are always located behind the mirror. Virtual images can be either upright or inverted. Virtual images can be magnified in size, reduced in size or the same size as the object. Virtual images can be formed by concave, convex and plane mirrors. Magnification is the ratio between the height of the object and the height of the image. In case of a virtual image, the height of the image, as well as the height of the object, carries a positive sign. Therefore, the magnification is positive in this case. A real image occurs where rays converge, whereas a virtual image occurs where rays only appear to converge. Real images can be produced by concave mirrors and converging lenses, only if the object is placed further away from the mirror/lens than the focal point and this real image is inverted.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

Current Loop as Magnetic Dipole and Its Derivation for JEE
