Answer
Verified
113.7k+ views
Hint: Rate of heat flow derived from the temperature gradient relates thermal conductivity with temperature difference and heat lost at time. Substitute the values in $H = \dfrac{{\Delta Q}}{t} = KA\dfrac{{dT}}{l}$ to find heat lost for time t. From the latent heat formula calculate the mass of ice reduced for heat Q in one minute.
Complete step-by-step solution
The heat is getting transferred by conduction.
The rate of flow of heat is given by,
$H = \dfrac{{\Delta Q}}{t} = KA\dfrac{{dT}}{l}$
Here; K is conductivity; A is the area of the cross section; t is the time; dT is the difference in temperature and I is the length of the conductor.
Given:
\[
K = 30W/m{\text{ }}K \\
L = 80cal/gm \\
A = 5c{m^2} \\
l = 25cm \\
dT{\text{ }} = {100^0}C \\
t = 60s. \\
\]
Substitute in the expression
$
\Delta Q = \dfrac{{30 \times 5 \times {{10}^{ - 4}} \times 60 \times 100}}{{25 \times {{10}^{ - 2}}}} \\
\Delta Q = 6J/s \\
$
We know that heat required to melt ice=\[Q = mL\] , where, \[m\] is the mass of ice.
$
m = \dfrac{{360}}{{80 \times 4.2}} \\
m = 1.07gm \\
$
Hence the mass of ice melted in one minute is 1.07 gm and the correct option is B.
Note: Thermal resistance of a body is a measure of its opposition to the flow of heat through it. It is defined as the ratio of temperature difference to the heat current. It is denoted by R . Its unit is \[Ks/kcal.\]
$R = \dfrac{{dT}}{H} = \dfrac{l}{{KA}}$ .
If it is difficult to remember the heat flow equation, then just recall the formula from electrodynamics
$R = \dfrac{V}{i}$; And $R = \dfrac{l}{{kA}}$ here V is the voltage (analogous to temperature difference), i is the current (analogous to rate of heat transfer), k is the conductivity (similar to the heat conductivity in the question).
Complete step-by-step solution
The heat is getting transferred by conduction.
The rate of flow of heat is given by,
$H = \dfrac{{\Delta Q}}{t} = KA\dfrac{{dT}}{l}$
Here; K is conductivity; A is the area of the cross section; t is the time; dT is the difference in temperature and I is the length of the conductor.
Given:
\[
K = 30W/m{\text{ }}K \\
L = 80cal/gm \\
A = 5c{m^2} \\
l = 25cm \\
dT{\text{ }} = {100^0}C \\
t = 60s. \\
\]
Substitute in the expression
$
\Delta Q = \dfrac{{30 \times 5 \times {{10}^{ - 4}} \times 60 \times 100}}{{25 \times {{10}^{ - 2}}}} \\
\Delta Q = 6J/s \\
$
We know that heat required to melt ice=\[Q = mL\] , where, \[m\] is the mass of ice.
$
m = \dfrac{{360}}{{80 \times 4.2}} \\
m = 1.07gm \\
$
Hence the mass of ice melted in one minute is 1.07 gm and the correct option is B.
Note: Thermal resistance of a body is a measure of its opposition to the flow of heat through it. It is defined as the ratio of temperature difference to the heat current. It is denoted by R . Its unit is \[Ks/kcal.\]
$R = \dfrac{{dT}}{H} = \dfrac{l}{{KA}}$ .
If it is difficult to remember the heat flow equation, then just recall the formula from electrodynamics
$R = \dfrac{V}{i}$; And $R = \dfrac{l}{{kA}}$ here V is the voltage (analogous to temperature difference), i is the current (analogous to rate of heat transfer), k is the conductivity (similar to the heat conductivity in the question).
Recently Updated Pages
JEE Main Login 2025 - Step-by-Step Explanation
JEE Main 2025 Exam Date: Check Important Dates and Schedule
JEE Main 2025 City Intimation Slip: Downloading Link and Exam Centres
JEE Main 2025 Application Form Session 1 Out - Apply Now
JEE Main 2025 Registration Ends Today: Apply Now for January Session
JEE Main OMR Sheet 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
Laws of Motion Class 11 Notes CBSE Physics Chapter 4 (Free PDF Download)