Answer
Verified
109.2k+ views
Hint: Studying the Work-Energy theorem will help us to solve the problem. According to the work-energy theorem, the NetWork on an object, plus the original kinetic energy is equal to the final kinetic energy of the object.
Complete step by step answer:
Work Energy theorem:
We know that mass$(m)$ of the object is $5kg, $velocity$(v)$ is$3m/s$ and acceleration$(a)$ is$12m/{s^2}$.
By using the equation of motion we can find the time taken by the object$(t)$which is accelerating,
$v = u + at.$ ($u$= initial velocity of the object which is obviously zero).
By substituting the value of $a$and $v$ we get,
$\Rightarrow 3 = 0 + 12t$
$ \Rightarrow t = \dfrac{3}{{12}}$
$ \Rightarrow t = \dfrac{1}{4}s$
Now by using the work-energy theorem, The net work performed on an object is proportional to the shift in kinetic energy of the object.
Assuming $W$ as work done by the object, $K.E{._f}$ as final kinetic energy, and $K.E{._i}$ as initial kinetic energy we calculate the work done as follows:
$\Rightarrow W = K.E{._f} - K.E{._i}$
$\Rightarrow (K.E. = \dfrac{1}{2}mv{}^2).$
$\Rightarrow W = \dfrac{1}{2}(5){(3)^2} - 0$ (Since the initial velocity is zero, the initial kinetic energy of the object is zero).
The work done is $W = \dfrac{{45}}{2}J$
The power needed is the rate of change of work done. The formula is derived as,
$\Rightarrow P = \dfrac{W}{t}$
$ \Rightarrow P = \dfrac{{45}}{2} \times 4$
Thus $P = 90Watts$
Hence by doing the above steps we find that the power needed by the object with the mass of $5kg$ to accelerate is equal to $90W.$
Note: Often people forget that only the net work, not the work performed by a particular power, is protected by the work-energy theorem. The law of work-energy states that the net work performed by the forces on an object is proportional to the difference in its kinetic energy.
Complete step by step answer:
Work Energy theorem:
We know that mass$(m)$ of the object is $5kg, $velocity$(v)$ is$3m/s$ and acceleration$(a)$ is$12m/{s^2}$.
By using the equation of motion we can find the time taken by the object$(t)$which is accelerating,
$v = u + at.$ ($u$= initial velocity of the object which is obviously zero).
By substituting the value of $a$and $v$ we get,
$\Rightarrow 3 = 0 + 12t$
$ \Rightarrow t = \dfrac{3}{{12}}$
$ \Rightarrow t = \dfrac{1}{4}s$
Now by using the work-energy theorem, The net work performed on an object is proportional to the shift in kinetic energy of the object.
Assuming $W$ as work done by the object, $K.E{._f}$ as final kinetic energy, and $K.E{._i}$ as initial kinetic energy we calculate the work done as follows:
$\Rightarrow W = K.E{._f} - K.E{._i}$
$\Rightarrow (K.E. = \dfrac{1}{2}mv{}^2).$
$\Rightarrow W = \dfrac{1}{2}(5){(3)^2} - 0$ (Since the initial velocity is zero, the initial kinetic energy of the object is zero).
The work done is $W = \dfrac{{45}}{2}J$
The power needed is the rate of change of work done. The formula is derived as,
$\Rightarrow P = \dfrac{W}{t}$
$ \Rightarrow P = \dfrac{{45}}{2} \times 4$
Thus $P = 90Watts$
Hence by doing the above steps we find that the power needed by the object with the mass of $5kg$ to accelerate is equal to $90W.$
Note: Often people forget that only the net work, not the work performed by a particular power, is protected by the work-energy theorem. The law of work-energy states that the net work performed by the forces on an object is proportional to the difference in its kinetic energy.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main