Answer
Verified
109.8k+ views
Hint: Work energy theorem gives the relation between work done and energy. According to the work energy theorem, the net work done on a body is equal to the change in the kinetic energy of the body.
Complete step by step solution:
Suppose an object is having a mass ‘m’. Initially the object is moving with a velocity \[{v_1}\] and its final velocity is \[{v_2}\].
Therefore the initial kinetic energy of the object will be \[{K_1} = \dfrac{1}{2}mv_1^2\].
The final kinetic energy of the object will be \[{K_2} = \dfrac{1}{2}mv_2^2\].
Given that a constant force is acting on the object, so using Newton’s second law of motion, it can be written that
F=m.a……(i)
Where ‘F’ is the force, ‘m’ is the mass and ‘a’ is the acceleration
Also work done is defined as the product of force applied and the displacement. Mathematically, work done is written as
W=F.d……(ii)
It is known that the acceleration is the rate of change of velocity of the object. If the velocity of the object is changing and the object covers a displacement ‘d’, then using the equation of motion we can write that
\[v_2^2 - v_1^2 = 2ad\]
\[\Rightarrow a = \dfrac{{v_2^2 - v_1^2}}{{2d}}\]
Substituting the value of acceleration in equation (i) and solving, we get
\[F = m.\dfrac{{v_2^2 - v_1^2}}{{2d}}\]
\[\Rightarrow F.d = \dfrac{1}{2}m(v_2^2 - v_1^2)\]
Using equation (ii), in the above equation we get
\[W = \dfrac{1}{2}m(v_2^2 - v_1^2)\]
\[\Rightarrow W = \Delta K.E.\]
Where ‘W’ is the work done and \[\Delta K.E.\] is the kinetic energy.
Hence Proved
Note: It is important to remember that work energy is used to find out the work done by a number of forces on a solid object if it is moving under the influence of a number of forces. Work energy theorem is scalar as it does not define the direction of velocity in which the object is moving.
Complete step by step solution:
Suppose an object is having a mass ‘m’. Initially the object is moving with a velocity \[{v_1}\] and its final velocity is \[{v_2}\].
Therefore the initial kinetic energy of the object will be \[{K_1} = \dfrac{1}{2}mv_1^2\].
The final kinetic energy of the object will be \[{K_2} = \dfrac{1}{2}mv_2^2\].
Given that a constant force is acting on the object, so using Newton’s second law of motion, it can be written that
F=m.a……(i)
Where ‘F’ is the force, ‘m’ is the mass and ‘a’ is the acceleration
Also work done is defined as the product of force applied and the displacement. Mathematically, work done is written as
W=F.d……(ii)
It is known that the acceleration is the rate of change of velocity of the object. If the velocity of the object is changing and the object covers a displacement ‘d’, then using the equation of motion we can write that
\[v_2^2 - v_1^2 = 2ad\]
\[\Rightarrow a = \dfrac{{v_2^2 - v_1^2}}{{2d}}\]
Substituting the value of acceleration in equation (i) and solving, we get
\[F = m.\dfrac{{v_2^2 - v_1^2}}{{2d}}\]
\[\Rightarrow F.d = \dfrac{1}{2}m(v_2^2 - v_1^2)\]
Using equation (ii), in the above equation we get
\[W = \dfrac{1}{2}m(v_2^2 - v_1^2)\]
\[\Rightarrow W = \Delta K.E.\]
Where ‘W’ is the work done and \[\Delta K.E.\] is the kinetic energy.
Hence Proved
Note: It is important to remember that work energy is used to find out the work done by a number of forces on a solid object if it is moving under the influence of a number of forces. Work energy theorem is scalar as it does not define the direction of velocity in which the object is moving.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The adjoining diagram shows the spectral energy density class 11 physics JEE_MAIN
In a steady state of heat conduction the temperature class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main