Show that, two thin lenses kept in contact, form an achromatic doublet if they satisfy the condition:
$\dfrac{\omega }{f} + \dfrac{{\omega '}}{{f'}} = 0$
where the terms have their usual meaning.
Answer
Verified
115.8k+ views
Hint: We know that a single lens will have different focal lengths for different colors and the image formed by a single lens faces a problem named chromatic aberration. Now, by keeping two thin lenses in contact, we can remove chromatic aberration and this condition is known as achromatic combination or doublet.
Formula used:
Lens maker’s formula states that
$\dfrac{1}{{{f_v}}} = \left( {{\mu _v} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Dispersive power,
\[\omega = \dfrac{{\left( {{\mu _v} - {\mu _r}} \right)}}{{\left( {\mu - 1} \right)}}\]
Complete step by step solution:
Now, we know that by keeping two thin lenses in contact, we can remove chromatic aberration and this condition is known as achromatic combination or doublet.
Now, in achromatic combination focal lengths of the lens for colour violet and red are equal, ${F_v} = {F_r}$.
Now, we will use the lens maker’s formula for both the lenses.
So,
$\dfrac{1}{{{f_v}}} = \left( {{\mu _v} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$ and
$\dfrac{1}{{{f_r}}} = \left( {{\mu _r} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Now, subtracting equation the above equations we get,
$\dfrac{1}{{{f_v}}} - \dfrac{1}{{{f_r}}} = \left( {{\mu _v} - {\mu _r}} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)..............\left( 1 \right)$
Now, if the mean focal length is $f$ , then
$\dfrac{1}{f} = \left( {\mu - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$ so, it can also be written as,
$\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}} = \dfrac{1}{{{f_v}}}\left( {{\mu _v} - 1} \right)$
Now, substituting this value in equation (1),
We get,
$\dfrac{1}{{{f_v}}} - \dfrac{1}{{{f_r}}} = \dfrac{{\left( {{\mu _v} - {\mu _r}} \right)}}{{\left( {\mu - 1} \right)f}}................\left( 2 \right)$
Now, as we know,
$\dfrac{{\left( {{\mu _v} - {\mu _r}} \right)}}{{\left( {\mu - 1} \right)}} = \omega $
Now, substituting this in the equation (2),
$\dfrac{1}{{{f_v}}} - \dfrac{1}{{{f_r}}} = \dfrac{\omega }{f}............\left( 3 \right)$
Now, similarly, we can write the above equation for the second lens of dispersive power $\omega '$ and focal length $f'$ ,
So,
$\dfrac{1}{{{{f'}_v}}} - \dfrac{1}{{{{f'}_r}}} = \dfrac{{\omega '}}{{f'}}............\left( 4 \right)$
Now, focal lengths for violet and red color will be \[{F_v}\] and \[{F_r}\],
Now, we can write that,
\[\dfrac{1}{{{F_v}}} = \dfrac{1}{{{f_v}}} + \dfrac{1}{{{{f'}_v}}}\]
And
\[\dfrac{1}{{{F_r}}} = \dfrac{1}{{{f_r}}} + \dfrac{1}{{{{f'}_r}}}\]
Now, we know that for an achromatic combination, ${F_v} = {F_r}$ .
So,
\[
\dfrac{1}{{{f_v}}} + \dfrac{1}{{{{f'}_v}}} = \dfrac{1}{{{f_r}}} + \dfrac{1}{{{{f'}_r}}} \\
\left( {\dfrac{1}{{{f_v}}} - \dfrac{1}{{{f_r}}}} \right) + \left( {\dfrac{1}{{{{f'}_v}}} - \dfrac{1}{{{{f'}_r}}}} \right) = 0.................\left( 5 \right) \\
\]
Now, putting equation (3) and (4) in equation (5)
We get,
$\dfrac{\omega }{f} + \dfrac{{\omega '}}{{f'}} = 0$ ,
which is the required condition.
Note: As we know, we have to use the lens maker’s formula to solve this question. Along with this, we have to be clear about the conditions of chromatic aberration and achromatic combination. Also, the above question is a bit typical. So, try to be cautious in doing the calculations.
Formula used:
Lens maker’s formula states that
$\dfrac{1}{{{f_v}}} = \left( {{\mu _v} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Dispersive power,
\[\omega = \dfrac{{\left( {{\mu _v} - {\mu _r}} \right)}}{{\left( {\mu - 1} \right)}}\]
Complete step by step solution:
Now, we know that by keeping two thin lenses in contact, we can remove chromatic aberration and this condition is known as achromatic combination or doublet.
Now, in achromatic combination focal lengths of the lens for colour violet and red are equal, ${F_v} = {F_r}$.
Now, we will use the lens maker’s formula for both the lenses.
So,
$\dfrac{1}{{{f_v}}} = \left( {{\mu _v} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$ and
$\dfrac{1}{{{f_r}}} = \left( {{\mu _r} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Now, subtracting equation the above equations we get,
$\dfrac{1}{{{f_v}}} - \dfrac{1}{{{f_r}}} = \left( {{\mu _v} - {\mu _r}} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)..............\left( 1 \right)$
Now, if the mean focal length is $f$ , then
$\dfrac{1}{f} = \left( {\mu - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$ so, it can also be written as,
$\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}} = \dfrac{1}{{{f_v}}}\left( {{\mu _v} - 1} \right)$
Now, substituting this value in equation (1),
We get,
$\dfrac{1}{{{f_v}}} - \dfrac{1}{{{f_r}}} = \dfrac{{\left( {{\mu _v} - {\mu _r}} \right)}}{{\left( {\mu - 1} \right)f}}................\left( 2 \right)$
Now, as we know,
$\dfrac{{\left( {{\mu _v} - {\mu _r}} \right)}}{{\left( {\mu - 1} \right)}} = \omega $
Now, substituting this in the equation (2),
$\dfrac{1}{{{f_v}}} - \dfrac{1}{{{f_r}}} = \dfrac{\omega }{f}............\left( 3 \right)$
Now, similarly, we can write the above equation for the second lens of dispersive power $\omega '$ and focal length $f'$ ,
So,
$\dfrac{1}{{{{f'}_v}}} - \dfrac{1}{{{{f'}_r}}} = \dfrac{{\omega '}}{{f'}}............\left( 4 \right)$
Now, focal lengths for violet and red color will be \[{F_v}\] and \[{F_r}\],
Now, we can write that,
\[\dfrac{1}{{{F_v}}} = \dfrac{1}{{{f_v}}} + \dfrac{1}{{{{f'}_v}}}\]
And
\[\dfrac{1}{{{F_r}}} = \dfrac{1}{{{f_r}}} + \dfrac{1}{{{{f'}_r}}}\]
Now, we know that for an achromatic combination, ${F_v} = {F_r}$ .
So,
\[
\dfrac{1}{{{f_v}}} + \dfrac{1}{{{{f'}_v}}} = \dfrac{1}{{{f_r}}} + \dfrac{1}{{{{f'}_r}}} \\
\left( {\dfrac{1}{{{f_v}}} - \dfrac{1}{{{f_r}}}} \right) + \left( {\dfrac{1}{{{{f'}_v}}} - \dfrac{1}{{{{f'}_r}}}} \right) = 0.................\left( 5 \right) \\
\]
Now, putting equation (3) and (4) in equation (5)
We get,
$\dfrac{\omega }{f} + \dfrac{{\omega '}}{{f'}} = 0$ ,
which is the required condition.
Note: As we know, we have to use the lens maker’s formula to solve this question. Along with this, we have to be clear about the conditions of chromatic aberration and achromatic combination. Also, the above question is a bit typical. So, try to be cautious in doing the calculations.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Charging and Discharging of Capacitor
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Physics Average Value and RMS Value JEE Main 2025
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment