
Solve $\int_{-2}^{2}|1-x^{2}\lvert.\text{d}x$ [IIT 1989; BIT Mesra 1996; Kurukshetra CEE 1998; MP PET 2002; Kerala (Engg.) 2002]
(A) 2
(B) 4
(C) 6
(D) 8
Answer
232.8k+ views
Hint: Integration means adding smaller functions to create a larger one. It is the inverse of differentiation, so it is also known as anti differentiation. Integrals with no integration limit are known as indefinite integrals. Integrals with an upper and lower limit are said to be definite integrals.
Complete step by step solution:The given integral is I = $\int_{-2}^{2}|1-x^{2}\lvert.\text{d}x$
Here the given function is f(x) = $\|1-x^{2}\lvert$ and the total range over which the integral is to be done is -2 to 2, with a lower limit of -2 and an upper limit of 2. We observe that the value of this function is negative in the range of -2 to -1, positive in the range of -1 to 1, and again negative in the range of 1 to 2.
So, the above integral can be written as
I = $-\int_{-2}^{-1}(1-x^{2}).\text{d}x+\int_{-1}^{1}(1-x^{2}).\text{d}x-\int_{1}^{2}(1-x^{2}).\text{d}x$
I = $-\left[x-\dfrac{x^3}{3}\right]_{-2}^{-1}+\left[x-\dfrac{x^3}{3}\right]_{-1}^{1}-\left[x-\dfrac{x^3}{3}\right]_{1}^{2}$
I = $-((-1)-\dfrac{-1^3}{3}-((-2)-\dfrac{-2^3}{3}))+((1)-\dfrac{1^3}{3}-((-1)-\dfrac{-1^3}{3})+((2)-\dfrac{2^3}{3}-((1)-\dfrac{1^3}{3}))$
I = $-(-1+\dfrac{1}{3}+2-\dfrac{8}{3})+(1-\dfrac{1}{3}+1-\dfrac{1}{3})-(2-\dfrac{8}{3}-1+\dfrac{1}{3})$
I = $\dfrac{4}{3}+\dfrac{4}{3}+\dfrac{4}{3}$
I = 4
Hence, the integration of $\|1-x^{2}\lvert$over the range of -2 to 2 is 4.
Option ‘B’ is correct
Note: The integration should be done carefully. Integration can be applied in daily life. It is used in chemistry to study radioactive decay reactions. It can be used to calculate the velocity and trajectory of the object. It is also used to calculate the centre of mass, centre of gravity, mass, and momentum of the satellites.
Complete step by step solution:The given integral is I = $\int_{-2}^{2}|1-x^{2}\lvert.\text{d}x$
Here the given function is f(x) = $\|1-x^{2}\lvert$ and the total range over which the integral is to be done is -2 to 2, with a lower limit of -2 and an upper limit of 2. We observe that the value of this function is negative in the range of -2 to -1, positive in the range of -1 to 1, and again negative in the range of 1 to 2.
So, the above integral can be written as
I = $-\int_{-2}^{-1}(1-x^{2}).\text{d}x+\int_{-1}^{1}(1-x^{2}).\text{d}x-\int_{1}^{2}(1-x^{2}).\text{d}x$
I = $-\left[x-\dfrac{x^3}{3}\right]_{-2}^{-1}+\left[x-\dfrac{x^3}{3}\right]_{-1}^{1}-\left[x-\dfrac{x^3}{3}\right]_{1}^{2}$
I = $-((-1)-\dfrac{-1^3}{3}-((-2)-\dfrac{-2^3}{3}))+((1)-\dfrac{1^3}{3}-((-1)-\dfrac{-1^3}{3})+((2)-\dfrac{2^3}{3}-((1)-\dfrac{1^3}{3}))$
I = $-(-1+\dfrac{1}{3}+2-\dfrac{8}{3})+(1-\dfrac{1}{3}+1-\dfrac{1}{3})-(2-\dfrac{8}{3}-1+\dfrac{1}{3})$
I = $\dfrac{4}{3}+\dfrac{4}{3}+\dfrac{4}{3}$
I = 4
Hence, the integration of $\|1-x^{2}\lvert$over the range of -2 to 2 is 4.
Option ‘B’ is correct
Note: The integration should be done carefully. Integration can be applied in daily life. It is used in chemistry to study radioactive decay reactions. It can be used to calculate the velocity and trajectory of the object. It is also used to calculate the centre of mass, centre of gravity, mass, and momentum of the satellites.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

