Answer
Verified
109.2k+ views
Hint: Integration means adding smaller functions to create a larger one. It is the inverse of differentiation, so it is also known as anti differentiation. Integrals with no integration limit are known as indefinite integrals. Integrals with an upper and lower limit are said to be definite integrals.
Complete step by step solution:The given integral is I = $\int_{-2}^{2}|1-x^{2}\lvert.\text{d}x$
Here the given function is f(x) = $\|1-x^{2}\lvert$ and the total range over which the integral is to be done is -2 to 2, with a lower limit of -2 and an upper limit of 2. We observe that the value of this function is negative in the range of -2 to -1, positive in the range of -1 to 1, and again negative in the range of 1 to 2.
So, the above integral can be written as
I = $-\int_{-2}^{-1}(1-x^{2}).\text{d}x+\int_{-1}^{1}(1-x^{2}).\text{d}x-\int_{1}^{2}(1-x^{2}).\text{d}x$
I = $-\left[x-\dfrac{x^3}{3}\right]_{-2}^{-1}+\left[x-\dfrac{x^3}{3}\right]_{-1}^{1}-\left[x-\dfrac{x^3}{3}\right]_{1}^{2}$
I = $-((-1)-\dfrac{-1^3}{3}-((-2)-\dfrac{-2^3}{3}))+((1)-\dfrac{1^3}{3}-((-1)-\dfrac{-1^3}{3})+((2)-\dfrac{2^3}{3}-((1)-\dfrac{1^3}{3}))$
I = $-(-1+\dfrac{1}{3}+2-\dfrac{8}{3})+(1-\dfrac{1}{3}+1-\dfrac{1}{3})-(2-\dfrac{8}{3}-1+\dfrac{1}{3})$
I = $\dfrac{4}{3}+\dfrac{4}{3}+\dfrac{4}{3}$
I = 4
Hence, the integration of $\|1-x^{2}\lvert$over the range of -2 to 2 is 4.
Option ‘B’ is correct
Note: The integration should be done carefully. Integration can be applied in daily life. It is used in chemistry to study radioactive decay reactions. It can be used to calculate the velocity and trajectory of the object. It is also used to calculate the centre of mass, centre of gravity, mass, and momentum of the satellites.
Complete step by step solution:The given integral is I = $\int_{-2}^{2}|1-x^{2}\lvert.\text{d}x$
Here the given function is f(x) = $\|1-x^{2}\lvert$ and the total range over which the integral is to be done is -2 to 2, with a lower limit of -2 and an upper limit of 2. We observe that the value of this function is negative in the range of -2 to -1, positive in the range of -1 to 1, and again negative in the range of 1 to 2.
So, the above integral can be written as
I = $-\int_{-2}^{-1}(1-x^{2}).\text{d}x+\int_{-1}^{1}(1-x^{2}).\text{d}x-\int_{1}^{2}(1-x^{2}).\text{d}x$
I = $-\left[x-\dfrac{x^3}{3}\right]_{-2}^{-1}+\left[x-\dfrac{x^3}{3}\right]_{-1}^{1}-\left[x-\dfrac{x^3}{3}\right]_{1}^{2}$
I = $-((-1)-\dfrac{-1^3}{3}-((-2)-\dfrac{-2^3}{3}))+((1)-\dfrac{1^3}{3}-((-1)-\dfrac{-1^3}{3})+((2)-\dfrac{2^3}{3}-((1)-\dfrac{1^3}{3}))$
I = $-(-1+\dfrac{1}{3}+2-\dfrac{8}{3})+(1-\dfrac{1}{3}+1-\dfrac{1}{3})-(2-\dfrac{8}{3}-1+\dfrac{1}{3})$
I = $\dfrac{4}{3}+\dfrac{4}{3}+\dfrac{4}{3}$
I = 4
Hence, the integration of $\|1-x^{2}\lvert$over the range of -2 to 2 is 4.
Option ‘B’ is correct
Note: The integration should be done carefully. Integration can be applied in daily life. It is used in chemistry to study radioactive decay reactions. It can be used to calculate the velocity and trajectory of the object. It is also used to calculate the centre of mass, centre of gravity, mass, and momentum of the satellites.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main