
The angular momentum of an electron in ${{n}^{th}}$ orbit is given by
(A) $nh$
(B) $\dfrac{h}{2\pi n}$
(C) $\dfrac{nh}{2\pi }$
(D) $\dfrac{{{n}^{2}}h}{2\pi }$
Answer
216.9k+ views
Hint Use the third postulate that says about the quantization of the angular momentum of an electron in the ${{n}^{th}}$ orbit. The postulate states that the angular momentum is an integral multiple of $\dfrac{h}{2\pi }$ where $h$ is the Planck’s constant.
Complete Step by step solution
The Bohr model of an atom is one of the first atomic models to successfully explain the position of the emission and absorption line in the hydrogen atom. Bohr formulated three postulates to explain his model of the hydrogen atom. The third postulate states that the angular momentum of an electron in an orbit is quantized.
The angular momentum is defined as the product of the moment of inertia of an object and its velocity. It can be viewed as the linear momentum in rotational motion. The angular momentum is given by
$L=mvr$
Here, $m$ is the mass of the electron, $v$ is the velocity of the electron, and $r$ is the radius of the orbit, or it can also be said as the distance of the electron from the nucleus.
Bohr’s third postulate states that the angular momentum of an electron revolving around the nucleus of an atom is quantized. The angular momentum is an integral multiple of $\dfrac{h}{2\pi }$ where $h$ is the Planck’s constant.
That is,
$mvr=n\dfrac{h}{2\pi }$
Here, $n$ has integer values and is the principal quantum number. It denotes the orbit in which the electron resides.
Hence, option (C) is the correct option.
Note
Although Bohr’s atomic model is successful in explaining the position of the absorption and emission lines spectra, it had some errors. One of the major drawbacks of Bohr’s atomic model was that it was primarily used to explain hydrogen atoms.
Complete Step by step solution
The Bohr model of an atom is one of the first atomic models to successfully explain the position of the emission and absorption line in the hydrogen atom. Bohr formulated three postulates to explain his model of the hydrogen atom. The third postulate states that the angular momentum of an electron in an orbit is quantized.
The angular momentum is defined as the product of the moment of inertia of an object and its velocity. It can be viewed as the linear momentum in rotational motion. The angular momentum is given by
$L=mvr$
Here, $m$ is the mass of the electron, $v$ is the velocity of the electron, and $r$ is the radius of the orbit, or it can also be said as the distance of the electron from the nucleus.
Bohr’s third postulate states that the angular momentum of an electron revolving around the nucleus of an atom is quantized. The angular momentum is an integral multiple of $\dfrac{h}{2\pi }$ where $h$ is the Planck’s constant.
That is,
$mvr=n\dfrac{h}{2\pi }$
Here, $n$ has integer values and is the principal quantum number. It denotes the orbit in which the electron resides.
Hence, option (C) is the correct option.
Note
Although Bohr’s atomic model is successful in explaining the position of the absorption and emission lines spectra, it had some errors. One of the major drawbacks of Bohr’s atomic model was that it was primarily used to explain hydrogen atoms.
Recently Updated Pages
Introduction to Dimensions: Understanding the Basics

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

