The audio signal having a frequency 500 Hz and voltage 2.6V, shows a deviation of 5.2KHz in a Frequency Modulation system. If the audio signal voltage changes to 8.6V, then calculate the new deviation obtained.
A. 17.2KHz
B. 19.6KHz
C. 25.6KHz
D. 14.6KHz
Answer
Verified
115.8k+ views
Hint:Before we start addressing the problem, we need to know about what data has been provided and what we need to solve. Here they have given the audio signal frequency, its voltage, and the deviation in the frequency modulation system. So, if the signal of the voltage changes by some value, then, we need to calculate the new deviation of an audio signal. For this first, we need to calculate the frequency deviation constant and then we get the new deviation as follows.
Formula Used:
The formula to find the deviation in FM wave is given by,
\[\Delta f = {K_f}{A_m}\]……… (1)
Where, \[{K_f}\] is frequency deviation constant and \[{A_m}\] is amplitude (voltage) of modulating signal.
Complete step by step solution:
To find when the deviation in FM wave we have,
\[\Delta f = {K_f}{A_m}\]
By rearranging the above equation for \[{K_f}\]we get,
\[{K_f} = \dfrac{{\Delta f}}{{{A_m}}}\]
Now, substitute the value of \[\Delta f = 5.2KHz\] and \[{A_m} = 2.6V\] in the above equation
\[{K_f} = \dfrac{{5.2}}{{2.6}}\]
\[\Rightarrow {K_f} = 2\]
Now, we need to find the new deviation obtained when the voltage changes, i.e., \[{A_m} = 8.6V\]. The new frequency deviation is given by,
\[\Delta f = {K_f}{A_m}\]
Here we know the value of \[{K_f}\] and \[{A_m}\].
So, substitute these in above equations we get,
\[\Delta f = {K_f}{A_m}\]
\[\Rightarrow \Delta f = 2 \times 8.6\]
\[\therefore \Delta f = 17.2KHz\]
Therefore, the new frequency deviation is 17.2KHz.
Hence, option A is the correct answer.
Note: Frequency modulation is used to reduce the noise and thereby improve the quality of radio reception. It consumes less power than amplitude modulation. When there is modulation, we generally need to properly demodulate it while still recovering the original signal. FM demodulators, also known as FM discriminators or FM detectors, are used in such instances.
Formula Used:
The formula to find the deviation in FM wave is given by,
\[\Delta f = {K_f}{A_m}\]……… (1)
Where, \[{K_f}\] is frequency deviation constant and \[{A_m}\] is amplitude (voltage) of modulating signal.
Complete step by step solution:
To find when the deviation in FM wave we have,
\[\Delta f = {K_f}{A_m}\]
By rearranging the above equation for \[{K_f}\]we get,
\[{K_f} = \dfrac{{\Delta f}}{{{A_m}}}\]
Now, substitute the value of \[\Delta f = 5.2KHz\] and \[{A_m} = 2.6V\] in the above equation
\[{K_f} = \dfrac{{5.2}}{{2.6}}\]
\[\Rightarrow {K_f} = 2\]
Now, we need to find the new deviation obtained when the voltage changes, i.e., \[{A_m} = 8.6V\]. The new frequency deviation is given by,
\[\Delta f = {K_f}{A_m}\]
Here we know the value of \[{K_f}\] and \[{A_m}\].
So, substitute these in above equations we get,
\[\Delta f = {K_f}{A_m}\]
\[\Rightarrow \Delta f = 2 \times 8.6\]
\[\therefore \Delta f = 17.2KHz\]
Therefore, the new frequency deviation is 17.2KHz.
Hence, option A is the correct answer.
Note: Frequency modulation is used to reduce the noise and thereby improve the quality of radio reception. It consumes less power than amplitude modulation. When there is modulation, we generally need to properly demodulate it while still recovering the original signal. FM demodulators, also known as FM discriminators or FM detectors, are used in such instances.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Physics Average Value and RMS Value JEE Main 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics