The correct order of the $O-O$ bond length in ${{O}_{2}}$, ${{H}_{2}}{{O}_{2}}$ and ${{O}_{3}}$ is
(1) ${{O}_{2}}>{{H}_{2}}{{O}_{2}}>{{O}_{3}}$
(2) ${{H}_{2}}{{O}_{2}}>{{O}_{3}}>{{O}_{2}}$
(3) ${{O}_{2}}>{{O}_{3}}>{{H}_{2}}{{O}_{2}}$
(4) ${{O}_{3}}>{{H}_{2}}{{O}_{2}}>{{O}_{2}}$
Answer
Verified
122.7k+ views
Hint: bond order is nothing but total number of bonds present in between the two atoms. The required answer includes concepts based on the molecular orbital theory where bond order is inversely proportional to bond length.
Complete step by step solution:
We have studied in our inorganic chemistry part that includes the chapter of finding bond order and also the structure of atoms based on several theories.
- One among those theories includes the molecular orbital theory which is well known as MOT.
- Molecular orbital theory is based on the method to depict the diagrams on the basis of their electronic structure using quantum mechanics.
- Molecular orbital theory makes use of the linear combination of atomic orbital
(LCAO).
- The diagram is based on three types of bonding. They are, bonding, antibonding and the non-bonding atomic orbital.
Now, according to the question we must find the order of bond length with the data given in terms of bond order. For this, let us draw the structures of the molecules given which is as shown below,
Structure of ${{O}_{2}}$ is as follows,
Bond order = 2
Structure of${{H}_{2}}{{O}_{2}}$ is given below,
Bond order = 1
Structure of ${{O}_{3}}$ is,
Bond order = 1.5
Therefore, increasing order of bond order is ${{H}_{2}}{{O}_{2}}<{{O}_{3}}<{{O}_{2}}$
Since, the bond angle is inversely proportional to bond order we can write the decreasing order of bond length as,
${{H}_{2}}{{O}_{2}}>{{O}_{3}}>{{O}_{2}}$
Thus, the correct answer is option (B).
Note: The principle of valence bond theory (VBT) and molecular orbital theory (MOT) are the same and not to be confused. But MOT prevails as it was successful in explaining the paramagnetic character of oxygen but not VBT.
Complete step by step solution:
We have studied in our inorganic chemistry part that includes the chapter of finding bond order and also the structure of atoms based on several theories.
- One among those theories includes the molecular orbital theory which is well known as MOT.
- Molecular orbital theory is based on the method to depict the diagrams on the basis of their electronic structure using quantum mechanics.
- Molecular orbital theory makes use of the linear combination of atomic orbital
(LCAO).
- The diagram is based on three types of bonding. They are, bonding, antibonding and the non-bonding atomic orbital.
Now, according to the question we must find the order of bond length with the data given in terms of bond order. For this, let us draw the structures of the molecules given which is as shown below,
Structure of ${{O}_{2}}$ is as follows,
Bond order = 2
Structure of${{H}_{2}}{{O}_{2}}$ is given below,
Bond order = 1
Structure of ${{O}_{3}}$ is,
Bond order = 1.5
Therefore, increasing order of bond order is ${{H}_{2}}{{O}_{2}}<{{O}_{3}}<{{O}_{2}}$
Since, the bond angle is inversely proportional to bond order we can write the decreasing order of bond length as,
${{H}_{2}}{{O}_{2}}>{{O}_{3}}>{{O}_{2}}$
Thus, the correct answer is option (B).
Note: The principle of valence bond theory (VBT) and molecular orbital theory (MOT) are the same and not to be confused. But MOT prevails as it was successful in explaining the paramagnetic character of oxygen but not VBT.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main
Total number of orbitals associated with the 3rd shell class 11 chemistry JEE_Main
Which of the following has the lowest boiling point class 11 chemistry JEE_Main
Which of the following compounds has zero dipole moment class 11 chemistry JEE_Main
Number of g of oxygen in 322 g Na2SO410H2O is Molwt class 11 chemistry JEE_Main
In the neutralization process of H3PO4 and NaOH the class 11 chemistry JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics
NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs