
The density of a nucleus in which mass of each nucleon is $1.67 \times {10^{ - 27}}kg$ and ${R_0} = 1.4 \times {10^{ - 15}}m$is:
(A) $2.995 \times {10^{17}}kg/{m^3}$
(B) $1.453 \times {10^{16}}kg/{m^3}$
(C) $1.453 \times {10^{19}}kg/{m^3}$
(D) $1.453 \times {10^{17}}kg/{m^3}$
Answer
233.1k+ views
Hint In the question mass of a single nucleon is given. We can use this to find the total mass of the nucleus. We know the formula for the radius of the nucleus. With the given values we can calculate the mass and volume of the nucleus. From this density can be calculated.
Formula used:
$\rho = \dfrac{m}{V}$ Where $\rho $stands for the density of the nucleus, $m$ stands for the mass of the nucleus, and $V$ stands for the volume of the nucleus.
Complete Step by step solution
Let $A$ be the number of nucleons in the nucleus.
Mass of each nucleon is given as, $1.67 \times {10^{ - 27}}kg$
Then the mass of the nucleus can be written as,
$m = A \times 1.67 \times {10^{ - 27}}kg$
The radius of a nucleus can be written as,
$R = {R_0}{A^{\dfrac{1}{3}}}$
It is given that, ${R_0} = 1.4 \times {10^{ - 15}}m$
Since the density of the nucleus can be written as $\rho = \dfrac{m}{V}$ we have to find the volume of the nucleus.
The nucleus is assumed to have a spherical shape. Therefore the volume of the nucleus can be written as,
$V = \dfrac{4}{3}\pi {R^3}$
Substituting $R = {R_0}{A^{\dfrac{1}{3}}}$ in the above equation, we get
$V = \dfrac{4}{3}\pi {\left( {{R_0}{A^{\dfrac{1}{3}}}} \right)^3}$
The volume of the nucleus is thus,
$V = \dfrac{4}{3}\pi R_0^3A$
The mass of the nucleus is,
$m = A \times 1.67 \times {10^{ - 27}}kg$
Now, we can write the density of the nucleus using the above values,
$\rho = \dfrac{m}{V} = \dfrac{{1.67 \times {{10}^{ - 27}}A}}{{\dfrac{4}{3}\pi R_0^3A}}$
$A$ will get cancelled and we substitute the value of ${R_0}$, we get
$\rho = \dfrac{{3 \times 1.67 \times {{10}^{ - 27}}}}{{4 \times 3.14 \times {{\left( {1.4 \times {{10}^{ - 15}}} \right)}^3}}} = 1.453 \times {10^{17}}$
The density of the nucleus will be $1.453 \times {10^{17}}kg/{m^3}$.
The answer is:
Option (D): $1.453 \times {10^{17}}kg/{m^3}$
Note
The nucleus consists of protons and neutrons, so they are collectively called nucleons. The mass number of an atom is the number of protons and neutrons. The mass of each nucleon is multiplied with the mass number to obtain the total mass of the nucleus.
Formula used:
$\rho = \dfrac{m}{V}$ Where $\rho $stands for the density of the nucleus, $m$ stands for the mass of the nucleus, and $V$ stands for the volume of the nucleus.
Complete Step by step solution
Let $A$ be the number of nucleons in the nucleus.
Mass of each nucleon is given as, $1.67 \times {10^{ - 27}}kg$
Then the mass of the nucleus can be written as,
$m = A \times 1.67 \times {10^{ - 27}}kg$
The radius of a nucleus can be written as,
$R = {R_0}{A^{\dfrac{1}{3}}}$
It is given that, ${R_0} = 1.4 \times {10^{ - 15}}m$
Since the density of the nucleus can be written as $\rho = \dfrac{m}{V}$ we have to find the volume of the nucleus.
The nucleus is assumed to have a spherical shape. Therefore the volume of the nucleus can be written as,
$V = \dfrac{4}{3}\pi {R^3}$
Substituting $R = {R_0}{A^{\dfrac{1}{3}}}$ in the above equation, we get
$V = \dfrac{4}{3}\pi {\left( {{R_0}{A^{\dfrac{1}{3}}}} \right)^3}$
The volume of the nucleus is thus,
$V = \dfrac{4}{3}\pi R_0^3A$
The mass of the nucleus is,
$m = A \times 1.67 \times {10^{ - 27}}kg$
Now, we can write the density of the nucleus using the above values,
$\rho = \dfrac{m}{V} = \dfrac{{1.67 \times {{10}^{ - 27}}A}}{{\dfrac{4}{3}\pi R_0^3A}}$
$A$ will get cancelled and we substitute the value of ${R_0}$, we get
$\rho = \dfrac{{3 \times 1.67 \times {{10}^{ - 27}}}}{{4 \times 3.14 \times {{\left( {1.4 \times {{10}^{ - 15}}} \right)}^3}}} = 1.453 \times {10^{17}}$
The density of the nucleus will be $1.453 \times {10^{17}}kg/{m^3}$.
The answer is:
Option (D): $1.453 \times {10^{17}}kg/{m^3}$
Note
The nucleus consists of protons and neutrons, so they are collectively called nucleons. The mass number of an atom is the number of protons and neutrons. The mass of each nucleon is multiplied with the mass number to obtain the total mass of the nucleus.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

