
The electric field potential in space has the form $V(x,y,z) = - 2xy + 3y{z^{ - 1}}$. The electric field intensity $\vec E$ magnitude at the point $( - 1,1,2)$ is
(A) $2\sqrt {86} units$
(B) $2\sqrt {163} units$
(C) $\sqrt {163} units$
(D) $\sqrt {86} units$
Answer
134.4k+ views
Hint: Electric field potential of a point is defined as the energy which is required to bring a unit positive charge from infinity to that point. The electric field intensity of a point is defined as the force that is experienced by a unit positive charge at that point.
Formula used:
$\vec E = - \dfrac{{dV}}{{dr}}$
Where V is the electric field potential at a point
And r is the distance from the point.
E is the electric field intensity.
Complete step by step solution:
The Relation between the electric field intensity and electric field potential is given by the relation-
$\vec E = - \dfrac{{dV}}{{dr}}$
This means that Electric field intensity is the derivative of the Electric field potential. The negative sign implies that the direction of $\vec E$ is opposite to that of V.
In the question it is given that,
The electric field potential is related to space as, $V(x,y,z) = - 2xy + 3y{z^{ - 1}}$
There will be different values of $\vec E$in all the different axes. The resultant of all these values will be the net Electric Field Intensity at the given point.
The value of $\vec E$at each axis is calculated by partially differentiating the V for that axis.
The component of$\vec E$in the x axis is given by-
${\vec E_x} = - \dfrac{{\partial V}}{{\partial x}} = - \dfrac{\partial }{{dx}}\left( { - 2xy + \dfrac{{3y}}{z}} \right)$
In partial differentiation with respect to x the variables other than x are treated as constant, thus the equation is-
${\vec E_x} = - \left( { - 2y} \right) = 2y\hat i$
Similarly for the y direction-
${\vec E_y} = - \dfrac{\partial }{{\partial y}}\left( { - 2xy + \dfrac{{3y}}{z}} \right)$
${\vec E_y} = - \left( { - 2x + \dfrac{3}{z}} \right)\hat j$
${\vec E_y} = \left( {2x - \dfrac{3}{z}} \right)\hat j$
For the z direction-
${\vec E_z} = - \dfrac{\partial }{{\partial z}}\left( { - 2xy + \dfrac{{3y}}{z}} \right)$
${\vec E_z} = - \left( { - \dfrac{{3y}}{{{z^2}}}} \right)\hat k$
${\vec E_z} = \left( {\dfrac{{3y}}{{{z^2}}}} \right)\hat k$
For point $\left( { - 1,1,2} \right)$the values or ${E_x},{E_y}and{E_z}$are given by-
${\vec E_x} = 2y\hat i = 2 \times 1 = 2\hat i$
${\vec E_y} = \left( {2x - \dfrac{3}{z}} \right)\hat j = \left( {2 \times ( - 1) - \dfrac{3}{2}} \right)\hat j$
${\vec E_y} = - \left( {2 + \dfrac{3}{2}} \right)\hat j = - \dfrac{7}{2}\hat j$
${\vec E_z} = \left( {\dfrac{{3y}}{{{z^2}}}} \right)\hat k = \left( {\dfrac{{3 \times 1}}{{2 \times 2}}} \right) = \left( {\dfrac{3}{4}} \right)\hat k$
The net electric field at the point$\left( { - 1,1,2} \right)$,
${E_{net}} = \sqrt {{{({E_x}\hat i)}^2} + {{({E_y}\hat j)}^2} + {{({E_z}\hat k)}^2}} $
${E_{net}} = \sqrt {{{\left( 2 \right)}^2} + {{\left( { - \dfrac{7}{2}} \right)}^2} + {{\left( {\dfrac{3}{4}} \right)}^2}} $
${E_{net}} = \sqrt {4 + \dfrac{{49}}{4} + \dfrac{9}{{16}}} $
\[{E_{net}} = \sqrt {\dfrac{{64 + 196 + 9}}{{16}}} \]
${E_{net}} = \sqrt {\dfrac{{269}}{{16}}} = \dfrac{1}{4}\sqrt {269} $
The net electric field at that point is $\dfrac{1}{4}\sqrt {269} $
No option is the correct answer.
Note: The electric field intensity is vector quantity, the reason why the electric potential is partially differentiated is because it is a scalar quantity. To specify the values associated with the particular directions of Electric field intensity, the partial differentiation is done.
Formula used:
$\vec E = - \dfrac{{dV}}{{dr}}$
Where V is the electric field potential at a point
And r is the distance from the point.
E is the electric field intensity.
Complete step by step solution:
The Relation between the electric field intensity and electric field potential is given by the relation-
$\vec E = - \dfrac{{dV}}{{dr}}$
This means that Electric field intensity is the derivative of the Electric field potential. The negative sign implies that the direction of $\vec E$ is opposite to that of V.
In the question it is given that,
The electric field potential is related to space as, $V(x,y,z) = - 2xy + 3y{z^{ - 1}}$
There will be different values of $\vec E$in all the different axes. The resultant of all these values will be the net Electric Field Intensity at the given point.
The value of $\vec E$at each axis is calculated by partially differentiating the V for that axis.
The component of$\vec E$in the x axis is given by-
${\vec E_x} = - \dfrac{{\partial V}}{{\partial x}} = - \dfrac{\partial }{{dx}}\left( { - 2xy + \dfrac{{3y}}{z}} \right)$
In partial differentiation with respect to x the variables other than x are treated as constant, thus the equation is-
${\vec E_x} = - \left( { - 2y} \right) = 2y\hat i$
Similarly for the y direction-
${\vec E_y} = - \dfrac{\partial }{{\partial y}}\left( { - 2xy + \dfrac{{3y}}{z}} \right)$
${\vec E_y} = - \left( { - 2x + \dfrac{3}{z}} \right)\hat j$
${\vec E_y} = \left( {2x - \dfrac{3}{z}} \right)\hat j$
For the z direction-
${\vec E_z} = - \dfrac{\partial }{{\partial z}}\left( { - 2xy + \dfrac{{3y}}{z}} \right)$
${\vec E_z} = - \left( { - \dfrac{{3y}}{{{z^2}}}} \right)\hat k$
${\vec E_z} = \left( {\dfrac{{3y}}{{{z^2}}}} \right)\hat k$
For point $\left( { - 1,1,2} \right)$the values or ${E_x},{E_y}and{E_z}$are given by-
${\vec E_x} = 2y\hat i = 2 \times 1 = 2\hat i$
${\vec E_y} = \left( {2x - \dfrac{3}{z}} \right)\hat j = \left( {2 \times ( - 1) - \dfrac{3}{2}} \right)\hat j$
${\vec E_y} = - \left( {2 + \dfrac{3}{2}} \right)\hat j = - \dfrac{7}{2}\hat j$
${\vec E_z} = \left( {\dfrac{{3y}}{{{z^2}}}} \right)\hat k = \left( {\dfrac{{3 \times 1}}{{2 \times 2}}} \right) = \left( {\dfrac{3}{4}} \right)\hat k$
The net electric field at the point$\left( { - 1,1,2} \right)$,
${E_{net}} = \sqrt {{{({E_x}\hat i)}^2} + {{({E_y}\hat j)}^2} + {{({E_z}\hat k)}^2}} $
${E_{net}} = \sqrt {{{\left( 2 \right)}^2} + {{\left( { - \dfrac{7}{2}} \right)}^2} + {{\left( {\dfrac{3}{4}} \right)}^2}} $
${E_{net}} = \sqrt {4 + \dfrac{{49}}{4} + \dfrac{9}{{16}}} $
\[{E_{net}} = \sqrt {\dfrac{{64 + 196 + 9}}{{16}}} \]
${E_{net}} = \sqrt {\dfrac{{269}}{{16}}} = \dfrac{1}{4}\sqrt {269} $
The net electric field at that point is $\dfrac{1}{4}\sqrt {269} $
No option is the correct answer.
Note: The electric field intensity is vector quantity, the reason why the electric potential is partially differentiated is because it is a scalar quantity. To specify the values associated with the particular directions of Electric field intensity, the partial differentiation is done.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

What are examples of Chemical Properties class 10 chemistry JEE_Main

JEE Main 2025 Session 2 Schedule Released – Check Important Details Here!

JEE Main 2025 Session 2 Admit Card – Release Date & Direct Download Link

JEE Main 2025 Session 2 Registration (Closed) - Link, Last Date & Fees

JEE Mains Result 2025 NTA NIC – Check Your Score Now!

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Elastic Collisions in One Dimension - JEE Important Topic

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
