
The electric field potential in space has the form $V(x,y,z) = - 2xy + 3y{z^{ - 1}}$. The electric field intensity $\vec E$ magnitude at the point $( - 1,1,2)$ is
(A) $2\sqrt {86} units$
(B) $2\sqrt {163} units$
(C) $\sqrt {163} units$
(D) $\sqrt {86} units$
Answer
216.3k+ views
Hint: Electric field potential of a point is defined as the energy which is required to bring a unit positive charge from infinity to that point. The electric field intensity of a point is defined as the force that is experienced by a unit positive charge at that point.
Formula used:
$\vec E = - \dfrac{{dV}}{{dr}}$
Where V is the electric field potential at a point
And r is the distance from the point.
E is the electric field intensity.
Complete step by step solution:
The Relation between the electric field intensity and electric field potential is given by the relation-
$\vec E = - \dfrac{{dV}}{{dr}}$
This means that Electric field intensity is the derivative of the Electric field potential. The negative sign implies that the direction of $\vec E$ is opposite to that of V.
In the question it is given that,
The electric field potential is related to space as, $V(x,y,z) = - 2xy + 3y{z^{ - 1}}$
There will be different values of $\vec E$in all the different axes. The resultant of all these values will be the net Electric Field Intensity at the given point.
The value of $\vec E$at each axis is calculated by partially differentiating the V for that axis.
The component of$\vec E$in the x axis is given by-
${\vec E_x} = - \dfrac{{\partial V}}{{\partial x}} = - \dfrac{\partial }{{dx}}\left( { - 2xy + \dfrac{{3y}}{z}} \right)$
In partial differentiation with respect to x the variables other than x are treated as constant, thus the equation is-
${\vec E_x} = - \left( { - 2y} \right) = 2y\hat i$
Similarly for the y direction-
${\vec E_y} = - \dfrac{\partial }{{\partial y}}\left( { - 2xy + \dfrac{{3y}}{z}} \right)$
${\vec E_y} = - \left( { - 2x + \dfrac{3}{z}} \right)\hat j$
${\vec E_y} = \left( {2x - \dfrac{3}{z}} \right)\hat j$
For the z direction-
${\vec E_z} = - \dfrac{\partial }{{\partial z}}\left( { - 2xy + \dfrac{{3y}}{z}} \right)$
${\vec E_z} = - \left( { - \dfrac{{3y}}{{{z^2}}}} \right)\hat k$
${\vec E_z} = \left( {\dfrac{{3y}}{{{z^2}}}} \right)\hat k$
For point $\left( { - 1,1,2} \right)$the values or ${E_x},{E_y}and{E_z}$are given by-
${\vec E_x} = 2y\hat i = 2 \times 1 = 2\hat i$
${\vec E_y} = \left( {2x - \dfrac{3}{z}} \right)\hat j = \left( {2 \times ( - 1) - \dfrac{3}{2}} \right)\hat j$
${\vec E_y} = - \left( {2 + \dfrac{3}{2}} \right)\hat j = - \dfrac{7}{2}\hat j$
${\vec E_z} = \left( {\dfrac{{3y}}{{{z^2}}}} \right)\hat k = \left( {\dfrac{{3 \times 1}}{{2 \times 2}}} \right) = \left( {\dfrac{3}{4}} \right)\hat k$
The net electric field at the point$\left( { - 1,1,2} \right)$,
${E_{net}} = \sqrt {{{({E_x}\hat i)}^2} + {{({E_y}\hat j)}^2} + {{({E_z}\hat k)}^2}} $
${E_{net}} = \sqrt {{{\left( 2 \right)}^2} + {{\left( { - \dfrac{7}{2}} \right)}^2} + {{\left( {\dfrac{3}{4}} \right)}^2}} $
${E_{net}} = \sqrt {4 + \dfrac{{49}}{4} + \dfrac{9}{{16}}} $
\[{E_{net}} = \sqrt {\dfrac{{64 + 196 + 9}}{{16}}} \]
${E_{net}} = \sqrt {\dfrac{{269}}{{16}}} = \dfrac{1}{4}\sqrt {269} $
The net electric field at that point is $\dfrac{1}{4}\sqrt {269} $
No option is the correct answer.
Note: The electric field intensity is vector quantity, the reason why the electric potential is partially differentiated is because it is a scalar quantity. To specify the values associated with the particular directions of Electric field intensity, the partial differentiation is done.
Formula used:
$\vec E = - \dfrac{{dV}}{{dr}}$
Where V is the electric field potential at a point
And r is the distance from the point.
E is the electric field intensity.
Complete step by step solution:
The Relation between the electric field intensity and electric field potential is given by the relation-
$\vec E = - \dfrac{{dV}}{{dr}}$
This means that Electric field intensity is the derivative of the Electric field potential. The negative sign implies that the direction of $\vec E$ is opposite to that of V.
In the question it is given that,
The electric field potential is related to space as, $V(x,y,z) = - 2xy + 3y{z^{ - 1}}$
There will be different values of $\vec E$in all the different axes. The resultant of all these values will be the net Electric Field Intensity at the given point.
The value of $\vec E$at each axis is calculated by partially differentiating the V for that axis.
The component of$\vec E$in the x axis is given by-
${\vec E_x} = - \dfrac{{\partial V}}{{\partial x}} = - \dfrac{\partial }{{dx}}\left( { - 2xy + \dfrac{{3y}}{z}} \right)$
In partial differentiation with respect to x the variables other than x are treated as constant, thus the equation is-
${\vec E_x} = - \left( { - 2y} \right) = 2y\hat i$
Similarly for the y direction-
${\vec E_y} = - \dfrac{\partial }{{\partial y}}\left( { - 2xy + \dfrac{{3y}}{z}} \right)$
${\vec E_y} = - \left( { - 2x + \dfrac{3}{z}} \right)\hat j$
${\vec E_y} = \left( {2x - \dfrac{3}{z}} \right)\hat j$
For the z direction-
${\vec E_z} = - \dfrac{\partial }{{\partial z}}\left( { - 2xy + \dfrac{{3y}}{z}} \right)$
${\vec E_z} = - \left( { - \dfrac{{3y}}{{{z^2}}}} \right)\hat k$
${\vec E_z} = \left( {\dfrac{{3y}}{{{z^2}}}} \right)\hat k$
For point $\left( { - 1,1,2} \right)$the values or ${E_x},{E_y}and{E_z}$are given by-
${\vec E_x} = 2y\hat i = 2 \times 1 = 2\hat i$
${\vec E_y} = \left( {2x - \dfrac{3}{z}} \right)\hat j = \left( {2 \times ( - 1) - \dfrac{3}{2}} \right)\hat j$
${\vec E_y} = - \left( {2 + \dfrac{3}{2}} \right)\hat j = - \dfrac{7}{2}\hat j$
${\vec E_z} = \left( {\dfrac{{3y}}{{{z^2}}}} \right)\hat k = \left( {\dfrac{{3 \times 1}}{{2 \times 2}}} \right) = \left( {\dfrac{3}{4}} \right)\hat k$
The net electric field at the point$\left( { - 1,1,2} \right)$,
${E_{net}} = \sqrt {{{({E_x}\hat i)}^2} + {{({E_y}\hat j)}^2} + {{({E_z}\hat k)}^2}} $
${E_{net}} = \sqrt {{{\left( 2 \right)}^2} + {{\left( { - \dfrac{7}{2}} \right)}^2} + {{\left( {\dfrac{3}{4}} \right)}^2}} $
${E_{net}} = \sqrt {4 + \dfrac{{49}}{4} + \dfrac{9}{{16}}} $
\[{E_{net}} = \sqrt {\dfrac{{64 + 196 + 9}}{{16}}} \]
${E_{net}} = \sqrt {\dfrac{{269}}{{16}}} = \dfrac{1}{4}\sqrt {269} $
The net electric field at that point is $\dfrac{1}{4}\sqrt {269} $
No option is the correct answer.
Note: The electric field intensity is vector quantity, the reason why the electric potential is partially differentiated is because it is a scalar quantity. To specify the values associated with the particular directions of Electric field intensity, the partial differentiation is done.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

