The photoelectric threshold wavelength for potassium (work function being 2 eV) is
(A) 310 nm
(B) 620 nm
(C) 6200 nm
(D) 3100 nm
Answer
Verified
123.9k+ views
Hint The threshold wavelength is the minimum wavelength of the light beam which is incident on the material required for emission of electrons. It is related to the work function with Planck’s constant and speed of light. Substitute the data in the expression to obtain the value of$\lambda $.
Complete step-by-step solution
The minimum amount of energy / work needed to remove an electron from the surface of the metal is called work function. It is denoted by φ. For the emission of electrons from the metal surface minimum frequency of the light used is required at which the emission takes place is called threshold frequency and has its corresponding threshold wavelength.
The work function is given by the formula,
$\varphi = \dfrac{{hc}}{\lambda }$
Where,
h is the Planck’s constant
c is the speed of light
$\lambda $ is the threshold wavelength.
The given data:
$
h = 6.62 \times {10^{ - 34}} \\
c = 3 \times {10^8} \\
\varphi = 2eV = 3.2 \times {10^{ - 19}}J \\
$
On substituting the known data in the above formula, we get
$
\lambda = \dfrac{{6.62 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{3.2 \times {{10}^{ - 19}}}} \\
\lambda = 620 \times {10^{ - 9}}m \\
\lambda = 620nm \\
$
The threshold wavelength for potassium is 620 nm. The correct option is B.
Note The work function is given in electron volt (eV) so it has to be converted into joules (J).
$1eV = 1.6 \times {10^{ - 19}}J$
The final answer needs to be written in nanometer nm which is equal to 10-9m
Complete step-by-step solution
The minimum amount of energy / work needed to remove an electron from the surface of the metal is called work function. It is denoted by φ. For the emission of electrons from the metal surface minimum frequency of the light used is required at which the emission takes place is called threshold frequency and has its corresponding threshold wavelength.
The work function is given by the formula,
$\varphi = \dfrac{{hc}}{\lambda }$
Where,
h is the Planck’s constant
c is the speed of light
$\lambda $ is the threshold wavelength.
The given data:
$
h = 6.62 \times {10^{ - 34}} \\
c = 3 \times {10^8} \\
\varphi = 2eV = 3.2 \times {10^{ - 19}}J \\
$
On substituting the known data in the above formula, we get
$
\lambda = \dfrac{{6.62 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{3.2 \times {{10}^{ - 19}}}} \\
\lambda = 620 \times {10^{ - 9}}m \\
\lambda = 620nm \\
$
The threshold wavelength for potassium is 620 nm. The correct option is B.
Note The work function is given in electron volt (eV) so it has to be converted into joules (J).
$1eV = 1.6 \times {10^{ - 19}}J$
The final answer needs to be written in nanometer nm which is equal to 10-9m
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Physics Average Value and RMS Value JEE Main 2025
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!