Answer
Verified
112.8k+ views
Hint The threshold wavelength is the minimum wavelength of the light beam which is incident on the material required for emission of electrons. It is related to the work function with Planck’s constant and speed of light. Substitute the data in the expression to obtain the value of$\lambda $.
Complete step-by-step solution
The minimum amount of energy / work needed to remove an electron from the surface of the metal is called work function. It is denoted by φ. For the emission of electrons from the metal surface minimum frequency of the light used is required at which the emission takes place is called threshold frequency and has its corresponding threshold wavelength.
The work function is given by the formula,
$\varphi = \dfrac{{hc}}{\lambda }$
Where,
h is the Planck’s constant
c is the speed of light
$\lambda $ is the threshold wavelength.
The given data:
$
h = 6.62 \times {10^{ - 34}} \\
c = 3 \times {10^8} \\
\varphi = 2eV = 3.2 \times {10^{ - 19}}J \\
$
On substituting the known data in the above formula, we get
$
\lambda = \dfrac{{6.62 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{3.2 \times {{10}^{ - 19}}}} \\
\lambda = 620 \times {10^{ - 9}}m \\
\lambda = 620nm \\
$
The threshold wavelength for potassium is 620 nm. The correct option is B.
Note The work function is given in electron volt (eV) so it has to be converted into joules (J).
$1eV = 1.6 \times {10^{ - 19}}J$
The final answer needs to be written in nanometer nm which is equal to 10-9m
Complete step-by-step solution
The minimum amount of energy / work needed to remove an electron from the surface of the metal is called work function. It is denoted by φ. For the emission of electrons from the metal surface minimum frequency of the light used is required at which the emission takes place is called threshold frequency and has its corresponding threshold wavelength.
The work function is given by the formula,
$\varphi = \dfrac{{hc}}{\lambda }$
Where,
h is the Planck’s constant
c is the speed of light
$\lambda $ is the threshold wavelength.
The given data:
$
h = 6.62 \times {10^{ - 34}} \\
c = 3 \times {10^8} \\
\varphi = 2eV = 3.2 \times {10^{ - 19}}J \\
$
On substituting the known data in the above formula, we get
$
\lambda = \dfrac{{6.62 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{3.2 \times {{10}^{ - 19}}}} \\
\lambda = 620 \times {10^{ - 9}}m \\
\lambda = 620nm \\
$
The threshold wavelength for potassium is 620 nm. The correct option is B.
Note The work function is given in electron volt (eV) so it has to be converted into joules (J).
$1eV = 1.6 \times {10^{ - 19}}J$
The final answer needs to be written in nanometer nm which is equal to 10-9m
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Displacement-Time Graph and Velocity-Time Graph for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics