The pole strength of a bar magnet is $48$ ampere-metre and the distance between its poles is $25cm$.The moment of the couple by which it can be placed at an angle of ${30^o}$ with the uniform magnetic intensity of flux density \[0.15{\text{ }}N{A^{ - 1}}{m^{ - 1}}\] will be
(A) $12Nm$
(B) $18Nm$
(C) $0.9Nm$
(D) None of the above
Answer
Verified
124.5k+ views
Hint:
To solve this question, we will first find the magnetization M and then use the general torque formula we will solve for the moment of couple required for the bar magnet to place it in a given condition.
Formula Used:
The magnetization M, the strength of magnet m, and length between poles L is related as $M = m.L$
Torque or moment of the couple is related as $\tau = MB\sin \theta $ where B is magnetic flux density and $\theta $ is the angle at which the bar magnet is placed.
Complete step by step solution:
According to the question, we have given that $m = 48Am$, $L = 25cm = 25 \times {10^{ - 2}}m$ so, magnetization is given by $M = m.L$ on putting the values, we get
$M = 48 \times 25 \times {10^{ - 2}}A{m^2} \to (i)$
now, the torque acting on the bar magnetic can be calculated using the formula $\tau = MB\sin \theta $ and we have given that $B = 0.15N{A^{ - 1}}{m^{ - 1}}$ and $\sin \theta = \sin {30^o} = 0.5$ on putting these values we get,
$\tau = MB\sin \theta $ also using value from equation (i) we have,
$
\tau = 48 \times 25 \times 0.15 \times 0.5 \times {10^{ - 2}} \\
\tau = 0.9Nm \\
$
So, the moment of couple required to place the bar magnet is $0.9Nm$
Hence, the correct answer is option (C) $0.9Nm$
Therefore, the correct option is C.
Note:
It should be noted that in the formula of the moment of a couple $\tau = MB\sin \theta $, the magnetization and magnetic field density have the vector cross product and in vector form, it’s written as $\vec \tau = \vec M \times \vec B$, torque and moment of couples are just two words representing same meaning, they are not different.
To solve this question, we will first find the magnetization M and then use the general torque formula we will solve for the moment of couple required for the bar magnet to place it in a given condition.
Formula Used:
The magnetization M, the strength of magnet m, and length between poles L is related as $M = m.L$
Torque or moment of the couple is related as $\tau = MB\sin \theta $ where B is magnetic flux density and $\theta $ is the angle at which the bar magnet is placed.
Complete step by step solution:
According to the question, we have given that $m = 48Am$, $L = 25cm = 25 \times {10^{ - 2}}m$ so, magnetization is given by $M = m.L$ on putting the values, we get
$M = 48 \times 25 \times {10^{ - 2}}A{m^2} \to (i)$
now, the torque acting on the bar magnetic can be calculated using the formula $\tau = MB\sin \theta $ and we have given that $B = 0.15N{A^{ - 1}}{m^{ - 1}}$ and $\sin \theta = \sin {30^o} = 0.5$ on putting these values we get,
$\tau = MB\sin \theta $ also using value from equation (i) we have,
$
\tau = 48 \times 25 \times 0.15 \times 0.5 \times {10^{ - 2}} \\
\tau = 0.9Nm \\
$
So, the moment of couple required to place the bar magnet is $0.9Nm$
Hence, the correct answer is option (C) $0.9Nm$
Therefore, the correct option is C.
Note:
It should be noted that in the formula of the moment of a couple $\tau = MB\sin \theta $, the magnetization and magnetic field density have the vector cross product and in vector form, it’s written as $\vec \tau = \vec M \times \vec B$, torque and moment of couples are just two words representing same meaning, they are not different.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
JEE Main Login 2045: Step-by-Step Instructions and Details
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Ideal and Non-Ideal Solutions Raoult's Law - JEE
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!