Answer
Verified
112.8k+ views
Hint: We have the relationship between electric field and potential difference which is given by:
$E = \dfrac{V}{d}$. Where E is the electric field of the charge present, V is the potential difference of the cell, d is the length of balance for E.
Where electric field is given when change in potential takes place by:
$E = - \dfrac{{dV}}{{dx}}$(Minus sign shows the opposite direction from potential difference)
Using the above relations we will solve the problem.
Complete step by step solution:
Let’s define the electric field and potential difference first.
Electric field is defined as the electric force per unit charge. The direction of the field is taken to be the direction of the force it would exert on a positive test charge. The electric field is radially outwards from the positive charge and radially inwards from the negative charge. Electric field is generated around positive or negative charge, field may be attracting or repelling.
Potential difference: Potential difference: potential difference is the difference in electric potential between two points, which is defined as the work needed per unit of charge to move a test charge between the two points.
Now comes the calculation part:
Given,
$V(x) = \dfrac{{20}}{{({x^2} - 4)}}$ (Potential difference)
Where electric field is given as,
$E = - \dfrac{{dV}}{{dx}}$ (negative sign indicates direction of electric field is opposite to the direction of potential difference)
Let’s do the differentiation of potential differences.
$ \Rightarrow E = - \dfrac{{d\dfrac{{20}}{{({x^2} - 4)}}}}{{dx}}$
$ \Rightarrow E = - \dfrac{{ - 40x}}{{{{({x^2} - 4)}^2}}}$
$ \Rightarrow E = \dfrac{{40x}}{{{{\left( {{x^2} - 4} \right)}^2}}}$ ...............(1)
Value of x is given as $x = 4\mu m$
$ \Rightarrow E = \dfrac{{40 \times 4}}{{{{\left( {{4^2} - 4} \right)}^2}}} \\
\Rightarrow E = \dfrac{{10}}{9}volt/\mu m \\$ (We have substituted the value of x in equation 1)
Electric field is positive which means the positive direction is in the positive direction of x.
Thus option (A) is correct.
Note: Electric field has many applications which we observe in our daily life such used in Van de graaff generators, Xerography is a dry copying process based on electrostatics, laser printers, inkjet printers and many other uses in medical fields such as MRI machines.
$E = \dfrac{V}{d}$. Where E is the electric field of the charge present, V is the potential difference of the cell, d is the length of balance for E.
Where electric field is given when change in potential takes place by:
$E = - \dfrac{{dV}}{{dx}}$(Minus sign shows the opposite direction from potential difference)
Using the above relations we will solve the problem.
Complete step by step solution:
Let’s define the electric field and potential difference first.
Electric field is defined as the electric force per unit charge. The direction of the field is taken to be the direction of the force it would exert on a positive test charge. The electric field is radially outwards from the positive charge and radially inwards from the negative charge. Electric field is generated around positive or negative charge, field may be attracting or repelling.
Potential difference: Potential difference: potential difference is the difference in electric potential between two points, which is defined as the work needed per unit of charge to move a test charge between the two points.
Now comes the calculation part:
Given,
$V(x) = \dfrac{{20}}{{({x^2} - 4)}}$ (Potential difference)
Where electric field is given as,
$E = - \dfrac{{dV}}{{dx}}$ (negative sign indicates direction of electric field is opposite to the direction of potential difference)
Let’s do the differentiation of potential differences.
$ \Rightarrow E = - \dfrac{{d\dfrac{{20}}{{({x^2} - 4)}}}}{{dx}}$
$ \Rightarrow E = - \dfrac{{ - 40x}}{{{{({x^2} - 4)}^2}}}$
$ \Rightarrow E = \dfrac{{40x}}{{{{\left( {{x^2} - 4} \right)}^2}}}$ ...............(1)
Value of x is given as $x = 4\mu m$
$ \Rightarrow E = \dfrac{{40 \times 4}}{{{{\left( {{4^2} - 4} \right)}^2}}} \\
\Rightarrow E = \dfrac{{10}}{9}volt/\mu m \\$ (We have substituted the value of x in equation 1)
Electric field is positive which means the positive direction is in the positive direction of x.
Thus option (A) is correct.
Note: Electric field has many applications which we observe in our daily life such used in Van de graaff generators, Xerography is a dry copying process based on electrostatics, laser printers, inkjet printers and many other uses in medical fields such as MRI machines.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Displacement-Time Graph and Velocity-Time Graph for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics