Answer
Verified
109.2k+ views
Hint: In order to find the rate constant, we’ll need to understand the process of calculating the rate constant. The rate constant of any given chemical reaction is dependent on the 2 main factors: 1. The initial rate of the reaction 2. The order of the reaction with respect to the reactants involved.
Complete Step-by-Step Solution:
In order to calculate the order of the reaction with respect to the reactants involved:
For [\[{I^ - }\]]:
Comparing reactions 01 and 02, we can see that the concentration of \[[{S_2}{O_8}_{}^{2 - }]\]is kept constant. On the other hand, the concentration value of [\[{I^ - }\]] has been halved. In correspondence, the rate of the reaction changes from \[12.56 \times {10^{ - 6}}\] in reaction 01 to \[6.25 \times {10^{ - 6}}\]in reaction 02. This is a decrease of \[6.25 \times {10^{ - 6}}\]in the value of the rate of the reaction, i.e. the value of the reaction rate also halved. Since the concentration of [\[{I^ - }\]] was halved to achieve the new reaction rate, the order of reaction with respect to [\[{I^ - }\]]is 1.
For \[[{S_2}{O_8}_{}^{2 - }]\]:
Comparing reactions 01 and 03, we can see that the concentration [\[{I^ - }\]] of is kept constant. On the other hand, the concentration value of \[[{S_2}{O_8}_{}^{2 - }]\]has been halved. In correspondence, the rate of the reaction changes from \[12.56 \times {10^{ - 6}}\] in reaction 01 to \[5.56 \times {10^{ - 6}}\] in reaction 02. This is a decrease of 2.248 times the original value, in the value of the rate of the reaction. Since the concentration of \[[{S_2}{O_8}_{}^{2 - }]\] was halved to achieve the new reaction rate, the order of reaction with respect to \[[{S_2}{O_8}_{}^{2 - }]\]is \[\dfrac{{2.248}}{2} = 1.124 \approx 1\]
Hence, the expression for the rate of the reaction can be represented as:
\[R = k{[{I^ - }]^m}{[{S_2}{O_8}_{}^{2 - }]^n}\]
Where, R is the rate of the reaction
k is the rate constant
m is the order of the reaction for\[[{I^ - }] = 1\]
n is the order of the reaction for \[[{S_2}{O_8}_{}^{2 - }] = 1\]
Hence substituting the values obtained and from reaction 01, we get,
\[k = \dfrac{R}{{{{[{I^ - }]}^m}{{[{S_2}{O_8}_{}^{2 - }]}^n}}}\]
\[k = \dfrac{{12.56 \times {{10}^{ - 6}}}}{{{{[{I^ - }]}^1}{{[{S_2}{O_8}_{}^{2 - }]}^1}}}\]
\[k = \dfrac{{12.56 \times {{10}^{ - 6}}}}{{{{[0.08]}^1}{{[0.04]}^1}}}\]
\[k = 3.7 \times {10^{ - 3}}\]\[Lmo{l^{ - 1}}{s^{ - 1}}\]
Hence, Option C is the correct option.
Note: In order to determine the reaction order from experimental data either the differential rate law or the integrated rate law can be used. Often, the values of the exponents used in the rate law are the positive integers: 1 and 2 or even 0. Hence, the reactions are zeroth, first, or second order in each reactant.
Complete Step-by-Step Solution:
In order to calculate the order of the reaction with respect to the reactants involved:
For [\[{I^ - }\]]:
Comparing reactions 01 and 02, we can see that the concentration of \[[{S_2}{O_8}_{}^{2 - }]\]is kept constant. On the other hand, the concentration value of [\[{I^ - }\]] has been halved. In correspondence, the rate of the reaction changes from \[12.56 \times {10^{ - 6}}\] in reaction 01 to \[6.25 \times {10^{ - 6}}\]in reaction 02. This is a decrease of \[6.25 \times {10^{ - 6}}\]in the value of the rate of the reaction, i.e. the value of the reaction rate also halved. Since the concentration of [\[{I^ - }\]] was halved to achieve the new reaction rate, the order of reaction with respect to [\[{I^ - }\]]is 1.
For \[[{S_2}{O_8}_{}^{2 - }]\]:
Comparing reactions 01 and 03, we can see that the concentration [\[{I^ - }\]] of is kept constant. On the other hand, the concentration value of \[[{S_2}{O_8}_{}^{2 - }]\]has been halved. In correspondence, the rate of the reaction changes from \[12.56 \times {10^{ - 6}}\] in reaction 01 to \[5.56 \times {10^{ - 6}}\] in reaction 02. This is a decrease of 2.248 times the original value, in the value of the rate of the reaction. Since the concentration of \[[{S_2}{O_8}_{}^{2 - }]\] was halved to achieve the new reaction rate, the order of reaction with respect to \[[{S_2}{O_8}_{}^{2 - }]\]is \[\dfrac{{2.248}}{2} = 1.124 \approx 1\]
Hence, the expression for the rate of the reaction can be represented as:
\[R = k{[{I^ - }]^m}{[{S_2}{O_8}_{}^{2 - }]^n}\]
Where, R is the rate of the reaction
k is the rate constant
m is the order of the reaction for\[[{I^ - }] = 1\]
n is the order of the reaction for \[[{S_2}{O_8}_{}^{2 - }] = 1\]
Hence substituting the values obtained and from reaction 01, we get,
\[k = \dfrac{R}{{{{[{I^ - }]}^m}{{[{S_2}{O_8}_{}^{2 - }]}^n}}}\]
\[k = \dfrac{{12.56 \times {{10}^{ - 6}}}}{{{{[{I^ - }]}^1}{{[{S_2}{O_8}_{}^{2 - }]}^1}}}\]
\[k = \dfrac{{12.56 \times {{10}^{ - 6}}}}{{{{[0.08]}^1}{{[0.04]}^1}}}\]
\[k = 3.7 \times {10^{ - 3}}\]\[Lmo{l^{ - 1}}{s^{ - 1}}\]
Hence, Option C is the correct option.
Note: In order to determine the reaction order from experimental data either the differential rate law or the integrated rate law can be used. Often, the values of the exponents used in the rate law are the positive integers: 1 and 2 or even 0. Hence, the reactions are zeroth, first, or second order in each reactant.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main