Answer
Verified
112.8k+ views
Hint: Given question has three terms magnetic permeability, field strength and flux density thus we will have to use a mathematical relation between these three which is, Flux density is a product of permeability and field strength.
Formula Used:
$B$ = $\mu$ $H$
Complete step by step answer:
In the question we have been a relation between Magnetic permeability and field strength but we need to find the value of field strength which will produce 1T flux density , Thus we will be using a direct relation between above three terms which is given by :
$B$ = $\mu$ $H$
Where B is flux density
Now we have given a relation is $\mu $= $\left( {\dfrac{{0.4}}{H} + 12 \times {{10}^{^{ - 4}}}} \right)$ with B = 1 ,
Therefore substituting the value of B and expression of $\mu $ in the main formula 1
$ \Rightarrow $1 = $\left( {\dfrac{{0.4}}{H} + 12 \times {{10}^{^{ - 4}}}} \right)$H
$ \Rightarrow $1 = $\left( {\dfrac{{0.4 + 12 \times {{10}^{ - 4}}H}}{H}} \right)H$
Cancelling H we get
$ \Rightarrow $$1 - 0.4 = 12 \times {10^{ - 4}}H$
$ \Rightarrow $$H = \dfrac{{.6}}{{12 \times {{10}^{ - 4}}}}$
$ \Rightarrow $$H = \dfrac{{1000 \times 6}}
{12} \\
\\
$
$ \Rightarrow H = 500$ $A/m$
Hence option B is the correct answer.
Note: Most important here is to remember the relation between the terms properly so that we don’t waste a lot of in straight formula based questions . It is also important that we have an idea of all the terms used in the problem so as to understand the process. It is important not to get confused within the terms themselves that is we should be very clear with denotion.
Formula Used:
$B$ = $\mu$ $H$
Complete step by step answer:
In the question we have been a relation between Magnetic permeability and field strength but we need to find the value of field strength which will produce 1T flux density , Thus we will be using a direct relation between above three terms which is given by :
$B$ = $\mu$ $H$
Where B is flux density
Now we have given a relation is $\mu $= $\left( {\dfrac{{0.4}}{H} + 12 \times {{10}^{^{ - 4}}}} \right)$ with B = 1 ,
Therefore substituting the value of B and expression of $\mu $ in the main formula 1
$ \Rightarrow $1 = $\left( {\dfrac{{0.4}}{H} + 12 \times {{10}^{^{ - 4}}}} \right)$H
$ \Rightarrow $1 = $\left( {\dfrac{{0.4 + 12 \times {{10}^{ - 4}}H}}{H}} \right)H$
Cancelling H we get
$ \Rightarrow $$1 - 0.4 = 12 \times {10^{ - 4}}H$
$ \Rightarrow $$H = \dfrac{{.6}}{{12 \times {{10}^{ - 4}}}}$
$ \Rightarrow $$H = \dfrac{{1000 \times 6}}
{12} \\
\\
$
$ \Rightarrow H = 500$ $A/m$
Hence option B is the correct answer.
Note: Most important here is to remember the relation between the terms properly so that we don’t waste a lot of in straight formula based questions . It is also important that we have an idea of all the terms used in the problem so as to understand the process. It is important not to get confused within the terms themselves that is we should be very clear with denotion.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Displacement-Time Graph and Velocity-Time Graph for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics