
The relation between magnetic permeability , $\mu $ and field strength, $H$ for a specimen of iron is as follows $\mu $ = $\left( {\dfrac{{0.4}}{H} + 12 \times {{10}^{^{ - 4}}}} \right)$ $Henry/meter$ . The value of $H$ which produces flux density of $1T$ will be?
A) $250$ $A/m$
B) $500$ $A/m$
C) $750$ $A/m$
D) ${10^3}$ $A/m$
Answer
133.5k+ views
Hint: Given question has three terms magnetic permeability, field strength and flux density thus we will have to use a mathematical relation between these three which is, Flux density is a product of permeability and field strength.
Formula Used:
$B$ = $\mu$ $H$
Complete step by step answer:
In the question we have been a relation between Magnetic permeability and field strength but we need to find the value of field strength which will produce 1T flux density , Thus we will be using a direct relation between above three terms which is given by :
$B$ = $\mu$ $H$
Where B is flux density
Now we have given a relation is $\mu $= $\left( {\dfrac{{0.4}}{H} + 12 \times {{10}^{^{ - 4}}}} \right)$ with B = 1 ,
Therefore substituting the value of B and expression of $\mu $ in the main formula 1
$ \Rightarrow $1 = $\left( {\dfrac{{0.4}}{H} + 12 \times {{10}^{^{ - 4}}}} \right)$H
$ \Rightarrow $1 = $\left( {\dfrac{{0.4 + 12 \times {{10}^{ - 4}}H}}{H}} \right)H$
Cancelling H we get
$ \Rightarrow $$1 - 0.4 = 12 \times {10^{ - 4}}H$
$ \Rightarrow $$H = \dfrac{{.6}}{{12 \times {{10}^{ - 4}}}}$
$ \Rightarrow $$H = \dfrac{{1000 \times 6}}
{12} \\
\\
$
$ \Rightarrow H = 500$ $A/m$
Hence option B is the correct answer.
Note: Most important here is to remember the relation between the terms properly so that we don’t waste a lot of in straight formula based questions . It is also important that we have an idea of all the terms used in the problem so as to understand the process. It is important not to get confused within the terms themselves that is we should be very clear with denotion.
Formula Used:
$B$ = $\mu$ $H$
Complete step by step answer:
In the question we have been a relation between Magnetic permeability and field strength but we need to find the value of field strength which will produce 1T flux density , Thus we will be using a direct relation between above three terms which is given by :
$B$ = $\mu$ $H$
Where B is flux density
Now we have given a relation is $\mu $= $\left( {\dfrac{{0.4}}{H} + 12 \times {{10}^{^{ - 4}}}} \right)$ with B = 1 ,
Therefore substituting the value of B and expression of $\mu $ in the main formula 1
$ \Rightarrow $1 = $\left( {\dfrac{{0.4}}{H} + 12 \times {{10}^{^{ - 4}}}} \right)$H
$ \Rightarrow $1 = $\left( {\dfrac{{0.4 + 12 \times {{10}^{ - 4}}H}}{H}} \right)H$
Cancelling H we get
$ \Rightarrow $$1 - 0.4 = 12 \times {10^{ - 4}}H$
$ \Rightarrow $$H = \dfrac{{.6}}{{12 \times {{10}^{ - 4}}}}$
$ \Rightarrow $$H = \dfrac{{1000 \times 6}}
{12} \\
\\
$
$ \Rightarrow H = 500$ $A/m$
Hence option B is the correct answer.
Note: Most important here is to remember the relation between the terms properly so that we don’t waste a lot of in straight formula based questions . It is also important that we have an idea of all the terms used in the problem so as to understand the process. It is important not to get confused within the terms themselves that is we should be very clear with denotion.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

Current Loop as Magnetic Dipole and Its Derivation for JEE
