
The unit of electric current is ‘ampere’ which is the current, when flowing through each of two parallel wires spaced 1 m distance apart in vacuum and these two wire is of infinite length will give rise to a force between them equal to which of the following
(A) \[1\,N/m\]$$
(B) $2 \times {10^{ - 7\,}}N/m$
(C) $1 \times {10^{ - 2}}\,N/m$
(D) $4\pi \times {10^{ - 2\,}}\,N/m$
Answer
216.3k+ views
Hint: Start with finding the relation between the force between the two parallel wires, current flowing through each wire, length of the wire and the distance between the two parallel wire. Then put all the values provided in the question in the required relation and finally you will get the force between the two wires.
Complete answer:
First start with the given information in the question:
Distance between the two parallel current carrying wire is 1 m.
Current flowing through the first wire, ${i_1} = 1\,A$
Current flowing through the second wire, ${i_2} = 1\,A$
Now we know that, force between the two current carrying parallel wire will be;
$F = \left( {\dfrac{{{\mu _0}}}{{2\pi }}} \right)\left[ {\dfrac{{\left( {{i_1}{i_2}l} \right)}}{y}} \right]$
Where, y is the distance between the two wire.
Substituting all the values in the equation of force, we get;
$\dfrac{F}{l} = \left[ {\dfrac{{\left( {4\pi \times {{10}^{ - 7}}} \right)}}{{2\pi }}} \right] \times \left[ {\dfrac{{\left( {1 \times 1} \right)}}{1}} \right]$
$\dfrac{F}{l} = 2 \times {10^{ - 7}}\,N/m$
Therefore, the force between the two parallel current carrying wire will be $2 \times {10^{ - 7}}\,N/m$
Hence the correct answer is Option(B).
Note: Here the two wire was parallel to each other if it not then the formula for the force between the two current carrying wire will get changed. Also the distance, current between them was same but it is not the case all the time so be careful before putting these value in the equation of force between the two wire.
Complete answer:
First start with the given information in the question:
Distance between the two parallel current carrying wire is 1 m.
Current flowing through the first wire, ${i_1} = 1\,A$
Current flowing through the second wire, ${i_2} = 1\,A$
Now we know that, force between the two current carrying parallel wire will be;
$F = \left( {\dfrac{{{\mu _0}}}{{2\pi }}} \right)\left[ {\dfrac{{\left( {{i_1}{i_2}l} \right)}}{y}} \right]$
Where, y is the distance between the two wire.
Substituting all the values in the equation of force, we get;
$\dfrac{F}{l} = \left[ {\dfrac{{\left( {4\pi \times {{10}^{ - 7}}} \right)}}{{2\pi }}} \right] \times \left[ {\dfrac{{\left( {1 \times 1} \right)}}{1}} \right]$
$\dfrac{F}{l} = 2 \times {10^{ - 7}}\,N/m$
Therefore, the force between the two parallel current carrying wire will be $2 \times {10^{ - 7}}\,N/m$
Hence the correct answer is Option(B).
Note: Here the two wire was parallel to each other if it not then the formula for the force between the two current carrying wire will get changed. Also the distance, current between them was same but it is not the case all the time so be careful before putting these value in the equation of force between the two wire.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

