Answer
Verified
109.2k+ views
Hint: Given that three charged particles are placed at the corners of an equilateral triangle. The length of the sides of the triangle is given and the charges are known. Therefore we can find the electric potential energy due to any two charges at a time. Lastly, to find the total electric potential of the system, we have to find the sum of the electric potentials.
Formula used:
Potential energy due to a particle carrying charge Q is given by
$E = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{Q}{r}$, where $\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$
Complete step by step solution:
Three particles are placed at the corners A, B and C of an equilateral triangle of side 10 cm. Each of the particles carries a charge of $10 \mu C$.
$Q = 10 \mu C$
Distance between any two charges, r = 10 cm = 0.1 m
Now, potential energy due to a particle carrying charge Q is given by
$\Rightarrow E = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{Q}{r}$, where $\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$
Let, potential energy of the charges at A and B be given by ${E_{AB}}$
$\Rightarrow {E_{AB}} = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{{{Q^2}}}{r}$
$ \Rightarrow 9 \times {10^9} \times \dfrac{{{{\left( {10 \times {{10}^{ - 6}}} \right)}^2}}}{{0.1}}$ J (substituting$\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$)
$ \Rightarrow 9 \times {10^9} \times \dfrac{{{{10}^{ - 10}}}}{{0.1}}$ $J$
$ \Rightarrow 9 \times {10^9} \times {10^{ - 9}}$ $J$
$ \Rightarrow 9$ $J$
Similarly, we can show that ${{{E}}_{{{BC}}}} = {{{E}}_{{{AC}}}} = {{9 J}}$
Therefore, total potential energy of the system is given by,
$\Rightarrow {E_{total}} = {E_{AB}} + {E_{BC}} + {E_{AC}} = \left( {9 + 9 + 9} \right){{ J}} = {{ }}27{{ J}}$
Hence, the correct answer is option (C).
Note: We know, potential energy due to a particle carrying charge Q is given by
$E = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{Q}{r}$, where $\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$.
Note that in the given data, Coulomb is an SI unit while the unit of length is given in CGS. Therefore we will have to convert all the units either in CGS or in SI.
Formula used:
Potential energy due to a particle carrying charge Q is given by
$E = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{Q}{r}$, where $\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$
Complete step by step solution:
Three particles are placed at the corners A, B and C of an equilateral triangle of side 10 cm. Each of the particles carries a charge of $10 \mu C$.
$Q = 10 \mu C$
Distance between any two charges, r = 10 cm = 0.1 m
Now, potential energy due to a particle carrying charge Q is given by
$\Rightarrow E = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{Q}{r}$, where $\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$
Let, potential energy of the charges at A and B be given by ${E_{AB}}$
$\Rightarrow {E_{AB}} = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{{{Q^2}}}{r}$
$ \Rightarrow 9 \times {10^9} \times \dfrac{{{{\left( {10 \times {{10}^{ - 6}}} \right)}^2}}}{{0.1}}$ J (substituting$\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$)
$ \Rightarrow 9 \times {10^9} \times \dfrac{{{{10}^{ - 10}}}}{{0.1}}$ $J$
$ \Rightarrow 9 \times {10^9} \times {10^{ - 9}}$ $J$
$ \Rightarrow 9$ $J$
Similarly, we can show that ${{{E}}_{{{BC}}}} = {{{E}}_{{{AC}}}} = {{9 J}}$
Therefore, total potential energy of the system is given by,
$\Rightarrow {E_{total}} = {E_{AB}} + {E_{BC}} + {E_{AC}} = \left( {9 + 9 + 9} \right){{ J}} = {{ }}27{{ J}}$
Hence, the correct answer is option (C).
Note: We know, potential energy due to a particle carrying charge Q is given by
$E = \dfrac{1}{{4\pi {\varepsilon _o}}}\dfrac{Q}{r}$, where $\dfrac{1}{{4\pi {\varepsilon _o}}} = 9 \times {10^9}{{ N}}{{.}}{{{m}}^2}/{C^2}$.
Note that in the given data, Coulomb is an SI unit while the unit of length is given in CGS. Therefore we will have to convert all the units either in CGS or in SI.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main