
Two 5 molal solutions are prepared by dissolving a non-electrolyte non-volatile solute separately in the solvents X and Y. The molecular weight of the solvents are ${M}_{X}{M}_{Y}$ respectively where ${M}_{X} = \cfrac {3}{4} {M}_{Y}$. The relative lowering of the vapour pressure of the solution X is "m" times that of the solution in Y. Given that the number of moles of solute is very small in comparison to that of the solvent, the value of "m" is?
A. $\cfrac {3}{4}$
B. $\cfrac {1}{2}$
C. $\cfrac {1}{4}$
D. $\cfrac {4}{3}$
Answer
232.8k+ views
Hint: When a solute is added to the solvent the vapour pressure of the solvent decreases. This is known as the lowering of vapour pressure. The lowering of the vapour pressure depends upon the amount of non-volatile solute is added in the solution.
Complete step by step answer: It is given is the question that two solutions are prepared by dissolving a non-electrolyte non-volatile solute separately in the solvents X and Y.
It is also given that $ { M }_{ X } = \cfrac { 3 }{ 4 } { M }_{ Y }$ ------ (1)
We know that the relative lowering of the vapour pressure of two solutions is given as:
$ { (\cfrac { \Delta P }{ P } ) }_{ X } = m{ (\cfrac { \Delta P }{ P } ) }_{ Y }$
The above relation can be written because it is given that the relative lowering of the vapour pressure of the solution X in "m" times that of the solution in Y.
Now, we know that the relative lowering of the vapour pressure of a solution is directly proportional to the mole fraction of the solution. Thus, from the vapour pressure relation, we get
$ { M }_{ x } \times \cfrac { 5 }{ 1000 } = m \times { M }_{ Y } \times \cfrac { 5 }{ 1000 }$
Here, $\cfrac {5}{1000}$ gets cancelled from both the sides. And then substituting this equation in equation (1), we get
$ \cfrac { 3 }{ 4 } \times { M }_{ Y } = m \times { M }_{ Y }$
Here, ${M}_{Y}$ gets cancelled from both the sides.
$ m = \cfrac { 3 }{ 4 }$
Therefore, the value of m is $\cfrac {3}{4}$. Hence, the correct answer is option (A).
Note: 5 molal solutions of both X and Y are prepared. It means that 5 moles of the solute is dissolved in 1 kg (or 1000g) of the solvent.
Therefore, no. of moles of solvent becomes $\cfrac { 1000 }{ M }$
Thus, the mole fraction of the solvent becomes $\cfrac { 5 }{ \cfrac { 1000 }{ M } }$
Complete step by step answer: It is given is the question that two solutions are prepared by dissolving a non-electrolyte non-volatile solute separately in the solvents X and Y.
It is also given that $ { M }_{ X } = \cfrac { 3 }{ 4 } { M }_{ Y }$ ------ (1)
We know that the relative lowering of the vapour pressure of two solutions is given as:
$ { (\cfrac { \Delta P }{ P } ) }_{ X } = m{ (\cfrac { \Delta P }{ P } ) }_{ Y }$
The above relation can be written because it is given that the relative lowering of the vapour pressure of the solution X in "m" times that of the solution in Y.
Now, we know that the relative lowering of the vapour pressure of a solution is directly proportional to the mole fraction of the solution. Thus, from the vapour pressure relation, we get
$ { M }_{ x } \times \cfrac { 5 }{ 1000 } = m \times { M }_{ Y } \times \cfrac { 5 }{ 1000 }$
Here, $\cfrac {5}{1000}$ gets cancelled from both the sides. And then substituting this equation in equation (1), we get
$ \cfrac { 3 }{ 4 } \times { M }_{ Y } = m \times { M }_{ Y }$
Here, ${M}_{Y}$ gets cancelled from both the sides.
$ m = \cfrac { 3 }{ 4 }$
Therefore, the value of m is $\cfrac {3}{4}$. Hence, the correct answer is option (A).
Note: 5 molal solutions of both X and Y are prepared. It means that 5 moles of the solute is dissolved in 1 kg (or 1000g) of the solvent.
Therefore, no. of moles of solvent becomes $\cfrac { 1000 }{ M }$
Thus, the mole fraction of the solvent becomes $\cfrac { 5 }{ \cfrac { 1000 }{ M } }$
Recently Updated Pages
Know The Difference Between Fluid And Liquid

Types of Solutions in Chemistry: Explained Simply

Difference Between Crystalline and Amorphous Solid: Table & Examples

Hess Law of Constant Heat Summation: Definition, Formula & Applications

Disproportionation Reaction: Definition, Example & JEE Guide

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

