
Two capacitors each having a capacitor $C$ and breakdown voltage $V$ are joined in series. The effective capacitance and maximum working voltage of the combination is:
(A) $2C,2V$
(B) $\dfrac{C}{2},\dfrac{V}{2}$
(C) $2C,V$
(D) \[\dfrac{C}{2},2V\]
Answer
232.8k+ views
Hint: We know for a given capacitor, charge \[Q\] on a capacitor is proportional to potential difference \[V\], between the plates.
\[Q = CV\]
And, for series combination charges on capacitors remain the same.
Complete Step by Step Answer
Figure, shows two capacitors connected in series. The capacitance is \[C\] and \[C\].

Now, let us take the potential of the right plate of the second plate to be zero. The potential of the left plate of the first capacitor is \[E\]. Since, the breakdown voltage of capacitors is \[V\]. Therefore capacitor \[1\],
\[E - V = \dfrac{Q}{C}...........(i)\]
Similarly, for other capacitor,
\[V - 0 = \dfrac{Q}{C}...........(ii)\]
Adding equation \[(i)\] and \[(ii)\]
\[E = Q\left( {\dfrac{1}{C} + \dfrac{1}{C}} \right)\,.........\,(iii)\]
If the equivalent capacitance of the combination is \[{C_{eq}}\].
\[{C_{eq}} = \dfrac{Q}{E}\,..........\,(iv)\]
Using equation \[(iii)\] and \[(iv)\] we get,
\[{C_{eq}} = \dfrac{C}{2}\,\]
And, the maximum working voltage is \[E\].
Hence, \[E = V + V = 2V\]
Hence, Option (D) is correct
Note:
Charge on series combination remains same but voltage changes with respect to the capacitance whereas voltage on parallel combination remains same but charge varies in accordance to capacitance.
\[Q = CV\]
And, for series combination charges on capacitors remain the same.
Complete Step by Step Answer
Figure, shows two capacitors connected in series. The capacitance is \[C\] and \[C\].

Now, let us take the potential of the right plate of the second plate to be zero. The potential of the left plate of the first capacitor is \[E\]. Since, the breakdown voltage of capacitors is \[V\]. Therefore capacitor \[1\],
\[E - V = \dfrac{Q}{C}...........(i)\]
Similarly, for other capacitor,
\[V - 0 = \dfrac{Q}{C}...........(ii)\]
Adding equation \[(i)\] and \[(ii)\]
\[E = Q\left( {\dfrac{1}{C} + \dfrac{1}{C}} \right)\,.........\,(iii)\]
If the equivalent capacitance of the combination is \[{C_{eq}}\].
\[{C_{eq}} = \dfrac{Q}{E}\,..........\,(iv)\]
Using equation \[(iii)\] and \[(iv)\] we get,
\[{C_{eq}} = \dfrac{C}{2}\,\]
And, the maximum working voltage is \[E\].
Hence, \[E = V + V = 2V\]
Hence, Option (D) is correct
Note:
Charge on series combination remains same but voltage changes with respect to the capacitance whereas voltage on parallel combination remains same but charge varies in accordance to capacitance.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

