
Two identical sheets of a metallic foil are separated by d and capacitance of the system is C and charged to a potential difference E. Keeping the charge constant, the separation is increased by l. Then the new capacitance and the potential difference will be:
A) $\dfrac{{{\varepsilon _0}A}}{d}.E$
B) $\dfrac{{{\varepsilon _0}A}}{{(d + l)}}.E$
C) $\dfrac{{{\varepsilon _0}A}}{{(d + l)}},(1 + \dfrac{l}{d})E$
D) $\dfrac{{{\varepsilon _0}A}}{d},(1 + \dfrac{l}{d})E$
Answer
133.8k+ views
Hint: A capacitor is the device that stores energy in the form of an electric charge. It consists of two electrical conductors separated by a distance and the space between them is filled with an insulating material or dielectric. The ability of the capacitor to store charge is known as capacitance.
Complete step by step solution:
Step I: The capacitance is the ratio of the change in electric charge of the system to the change in electric potential.
It is written as
$C = \dfrac{Q}{V}$---(i)
Where C is the capacitance
V is the potential and
Q is the charge
Step II: From equation (i) it can be written that the capacitance of the one of the metallic foil is $Q = CV$---(ii)
Since the charge will remain constant, the capacitance of the other metallic foil is written as
$ \Rightarrow Q = {C_1}{V_1}$---(iii)
Comparing equations (ii) and (iii),
$ \Rightarrow Q = CV = {C_1}{V_1}$---(iv)
Step III: The value of C for one of the metallic foil is
$ \Rightarrow C = \dfrac{{{\varepsilon _0}A}}{d}$
For another metallic foil, the charge is constant and the separation is increased by a distance l, so the new capacitance is given by
$ \Rightarrow {C_1} = \dfrac{{{\varepsilon _0}A}}{{(d + l)}}$---(v)
Substituting the value of capacitance in equation (iv),
$ \Rightarrow Q = \dfrac{{{\varepsilon _0}AE}}{d} = \dfrac{{{\varepsilon _0}A{E_1}}}{{d + l}}$---(vi)
Step IV: From equation (v) it can be written that
$\dfrac{{{\varepsilon _0}AE}}{d} = \dfrac{{{\varepsilon _0}A{E_1}}}{{d + l}}$
$ \Rightarrow {E_1} = \dfrac{{d + l}}{d}E$
$ \Rightarrow {E_1} = (1 + \dfrac{l}{d})E$---(vii)
Therefore, the new capacitance will be $\dfrac{{{\varepsilon _0}A}}{{d + l}}$and the new potential difference will be $(1 + \dfrac{l}{d})E$.
Option C is the right answer.
Note: It is important to note that two metallic sheets will behave like a capacitor. When a potential difference is applied across the capacitor one plate of the capacitor will have positive charge and the other will have a negative charge. In the steady state, the current will flow from the positive terminal of the capacitor to the negative terminal.
Complete step by step solution:
Step I: The capacitance is the ratio of the change in electric charge of the system to the change in electric potential.
It is written as
$C = \dfrac{Q}{V}$---(i)
Where C is the capacitance
V is the potential and
Q is the charge
Step II: From equation (i) it can be written that the capacitance of the one of the metallic foil is $Q = CV$---(ii)
Since the charge will remain constant, the capacitance of the other metallic foil is written as
$ \Rightarrow Q = {C_1}{V_1}$---(iii)
Comparing equations (ii) and (iii),
$ \Rightarrow Q = CV = {C_1}{V_1}$---(iv)
Step III: The value of C for one of the metallic foil is
$ \Rightarrow C = \dfrac{{{\varepsilon _0}A}}{d}$
For another metallic foil, the charge is constant and the separation is increased by a distance l, so the new capacitance is given by
$ \Rightarrow {C_1} = \dfrac{{{\varepsilon _0}A}}{{(d + l)}}$---(v)
Substituting the value of capacitance in equation (iv),
$ \Rightarrow Q = \dfrac{{{\varepsilon _0}AE}}{d} = \dfrac{{{\varepsilon _0}A{E_1}}}{{d + l}}$---(vi)
Step IV: From equation (v) it can be written that
$\dfrac{{{\varepsilon _0}AE}}{d} = \dfrac{{{\varepsilon _0}A{E_1}}}{{d + l}}$
$ \Rightarrow {E_1} = \dfrac{{d + l}}{d}E$
$ \Rightarrow {E_1} = (1 + \dfrac{l}{d})E$---(vii)
Therefore, the new capacitance will be $\dfrac{{{\varepsilon _0}A}}{{d + l}}$and the new potential difference will be $(1 + \dfrac{l}{d})E$.
Option C is the right answer.
Note: It is important to note that two metallic sheets will behave like a capacitor. When a potential difference is applied across the capacitor one plate of the capacitor will have positive charge and the other will have a negative charge. In the steady state, the current will flow from the positive terminal of the capacitor to the negative terminal.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

Current Loop as Magnetic Dipole and Its Derivation for JEE
