Answer
Verified
98.1k+ views
Hint: The total distance that the ray will cover before emerging out will be equivalent to the length of the plane mirrors. To solve the above question, first calculate the distance that the ray will cover in one reflection and then proceed further to calculate the maximum number of reflections.
Complete answer:
The length of the mirrors is the distance that the ray should cover in order to emerge out.
Separation between the mirrors, $d = 0.2{\text{ m}}$
Let us calculate the distance that the ray covers in the first reflection.
For plane mirrors, the angle of incidence is equivalent to the angle of reflection.
Hence, angle of reflection $ = {30^ \circ }$ .
In the above triangle,
$\tan {30^ \circ } = \dfrac{a}{d}$
Substituting the values,
$\dfrac{1}{{\sqrt 3 }} = \dfrac{a}{{0.2}}$
This gives $a = \dfrac{{0.2}}{{\sqrt 3 }}$
First reflection onwards, the distance covered by each ray would be $\dfrac{{0.2}}{{\sqrt 3 }}$ .
Let the total number of times the ray was reflected including the first one be $n$ , then
$n\left( {\dfrac{{0.2}}{{\sqrt 3 }}} \right) = 2\sqrt 3 $
On simplifying, we get $n = 30$ .
Hence, the maximum number of times the ray undergoes reflection before it emerges is 30.
Thus, the correct option is B.
Note:Angle of incidence is the angle that the incident ray makes with the normal of the mirror and angle of reflection is the angle that the reflected ray makes with the normal of the mirror. In the case of plane mirrors, the angle of incidence is equivalent to the angle of reflection. Use this property of plane mirrors and trigonometric relations to solve the given question.
Complete answer:
The length of the mirrors is the distance that the ray should cover in order to emerge out.
Separation between the mirrors, $d = 0.2{\text{ m}}$
Let us calculate the distance that the ray covers in the first reflection.
For plane mirrors, the angle of incidence is equivalent to the angle of reflection.
Hence, angle of reflection $ = {30^ \circ }$ .
In the above triangle,
$\tan {30^ \circ } = \dfrac{a}{d}$
Substituting the values,
$\dfrac{1}{{\sqrt 3 }} = \dfrac{a}{{0.2}}$
This gives $a = \dfrac{{0.2}}{{\sqrt 3 }}$
First reflection onwards, the distance covered by each ray would be $\dfrac{{0.2}}{{\sqrt 3 }}$ .
Let the total number of times the ray was reflected including the first one be $n$ , then
$n\left( {\dfrac{{0.2}}{{\sqrt 3 }}} \right) = 2\sqrt 3 $
On simplifying, we get $n = 30$ .
Hence, the maximum number of times the ray undergoes reflection before it emerges is 30.
Thus, the correct option is B.
Note:Angle of incidence is the angle that the incident ray makes with the normal of the mirror and angle of reflection is the angle that the reflected ray makes with the normal of the mirror. In the case of plane mirrors, the angle of incidence is equivalent to the angle of reflection. Use this property of plane mirrors and trigonometric relations to solve the given question.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
Calculate CFSE of the following complex FeCN64 A 04Delta class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
The focal length of a thin biconvex lens is 20cm When class 12 physics JEE_Main
If two bulbs of 25W and 100W rated at 200V are connected class 12 physics JEE_Main
A ball of mass 05 Kg moving with a velocity of 2ms class 11 physics JEE_Main