Answer
Verified
109.8k+ views
Hint: The total distance that the ray will cover before emerging out will be equivalent to the length of the plane mirrors. To solve the above question, first calculate the distance that the ray will cover in one reflection and then proceed further to calculate the maximum number of reflections.
Complete answer:
The length of the mirrors is the distance that the ray should cover in order to emerge out.
Separation between the mirrors, $d = 0.2{\text{ m}}$
Let us calculate the distance that the ray covers in the first reflection.
For plane mirrors, the angle of incidence is equivalent to the angle of reflection.
Hence, angle of reflection $ = {30^ \circ }$ .
In the above triangle,
$\tan {30^ \circ } = \dfrac{a}{d}$
Substituting the values,
$\dfrac{1}{{\sqrt 3 }} = \dfrac{a}{{0.2}}$
This gives $a = \dfrac{{0.2}}{{\sqrt 3 }}$
First reflection onwards, the distance covered by each ray would be $\dfrac{{0.2}}{{\sqrt 3 }}$ .
Let the total number of times the ray was reflected including the first one be $n$ , then
$n\left( {\dfrac{{0.2}}{{\sqrt 3 }}} \right) = 2\sqrt 3 $
On simplifying, we get $n = 30$ .
Hence, the maximum number of times the ray undergoes reflection before it emerges is 30.
Thus, the correct option is B.
Note:Angle of incidence is the angle that the incident ray makes with the normal of the mirror and angle of reflection is the angle that the reflected ray makes with the normal of the mirror. In the case of plane mirrors, the angle of incidence is equivalent to the angle of reflection. Use this property of plane mirrors and trigonometric relations to solve the given question.
Complete answer:
The length of the mirrors is the distance that the ray should cover in order to emerge out.
Separation between the mirrors, $d = 0.2{\text{ m}}$
Let us calculate the distance that the ray covers in the first reflection.
For plane mirrors, the angle of incidence is equivalent to the angle of reflection.
Hence, angle of reflection $ = {30^ \circ }$ .
In the above triangle,
$\tan {30^ \circ } = \dfrac{a}{d}$
Substituting the values,
$\dfrac{1}{{\sqrt 3 }} = \dfrac{a}{{0.2}}$
This gives $a = \dfrac{{0.2}}{{\sqrt 3 }}$
First reflection onwards, the distance covered by each ray would be $\dfrac{{0.2}}{{\sqrt 3 }}$ .
Let the total number of times the ray was reflected including the first one be $n$ , then
$n\left( {\dfrac{{0.2}}{{\sqrt 3 }}} \right) = 2\sqrt 3 $
On simplifying, we get $n = 30$ .
Hence, the maximum number of times the ray undergoes reflection before it emerges is 30.
Thus, the correct option is B.
Note:Angle of incidence is the angle that the incident ray makes with the normal of the mirror and angle of reflection is the angle that the reflected ray makes with the normal of the mirror. In the case of plane mirrors, the angle of incidence is equivalent to the angle of reflection. Use this property of plane mirrors and trigonometric relations to solve the given question.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
The adjoining diagram shows the spectral energy density class 11 physics JEE_MAIN
In a steady state of heat conduction the temperature class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main