Answer
Verified
109.2k+ views
Hint: Write unpolarised light definition, through this it could be found and analysed. For polarisation of light by polaroids using melus law is the key to solve these types of doubts.
Formula used:
The polarised beam when passing through the ${P_2}$ is
$ \Rightarrow $ $I = {I_0}{\cos ^2}\theta $
Where,
I is the intensity of polarised light
The angle between ${P_1}_{}$ and ${P_2}$ polarizer
It is also known as malus’s law.
Complete step by step solution:
When the beam of completely plane polarised light is incident on an analysis resultant intensity of light transmitted from analysed varies directly as the square if also become plane of analyse and polarize as square of $\cos \theta $ between the plane of analyse and polarize
$ \Rightarrow $ $I\alpha {\cos ^2}\theta $
$ \Rightarrow $ $I = {I_0}{\cos ^2}\theta $
When the unpolarised light passes through a polarised ${P_1}$ and it again this polarised light will pass through the polariser ${P_2}$. When the pass axis ${P_2}$ makes an angle $\theta $ with the pass axis of ${P_1}$ it will give an expression for polarised beam.
When this unpolarised light passes through ${P_1}$
The average value of ${\cos ^2}\theta $ (where $\theta$ lies between $0$ to $2\pi $) = $\dfrac{1}{2}$
Hence, $I = {I_0}{\cos ^2}\theta $
$I = {I_0} \times \dfrac{1}{2}$
$I = \dfrac{{{I_0}}}{2}$
Here the intensity reduces by $\dfrac{1}{2}$
When this unpolarised light passes through polarises ${P_1}$ the intensity drops to half is $\dfrac{{{I_0}}}{2}$ and when this polarised light passed through polarises ${P_2}$ the intensity of emitted light is,
Now when the polarised light from ${P_1}$, passes through ${P_2}$
$ \Rightarrow $ $I = {I_0}{\cos ^2}\theta $
$ \Rightarrow $ $I = \dfrac{{{I_0}}}{2}{\cos ^2}\theta $
$I = \dfrac{{{I_0}}}{2}{\cos ^2}\theta $
$\theta $ is the angle between ${P_1}$ and ${P_2}$
Note: In electromagnetic waves the filament is the superposition of wave trains and each has its own polarisation direction. Natural light is partial because the multiple scattering and the reflection. In polarised light circumstances of spatial orientation is defined.
Formula used:
The polarised beam when passing through the ${P_2}$ is
$ \Rightarrow $ $I = {I_0}{\cos ^2}\theta $
Where,
I is the intensity of polarised light
The angle between ${P_1}_{}$ and ${P_2}$ polarizer
It is also known as malus’s law.
Complete step by step solution:
When the beam of completely plane polarised light is incident on an analysis resultant intensity of light transmitted from analysed varies directly as the square if also become plane of analyse and polarize as square of $\cos \theta $ between the plane of analyse and polarize
$ \Rightarrow $ $I\alpha {\cos ^2}\theta $
$ \Rightarrow $ $I = {I_0}{\cos ^2}\theta $
When the unpolarised light passes through a polarised ${P_1}$ and it again this polarised light will pass through the polariser ${P_2}$. When the pass axis ${P_2}$ makes an angle $\theta $ with the pass axis of ${P_1}$ it will give an expression for polarised beam.
When this unpolarised light passes through ${P_1}$
The average value of ${\cos ^2}\theta $ (where $\theta$ lies between $0$ to $2\pi $) = $\dfrac{1}{2}$
Hence, $I = {I_0}{\cos ^2}\theta $
$I = {I_0} \times \dfrac{1}{2}$
$I = \dfrac{{{I_0}}}{2}$
Here the intensity reduces by $\dfrac{1}{2}$
When this unpolarised light passes through polarises ${P_1}$ the intensity drops to half is $\dfrac{{{I_0}}}{2}$ and when this polarised light passed through polarises ${P_2}$ the intensity of emitted light is,
Now when the polarised light from ${P_1}$, passes through ${P_2}$
$ \Rightarrow $ $I = {I_0}{\cos ^2}\theta $
$ \Rightarrow $ $I = \dfrac{{{I_0}}}{2}{\cos ^2}\theta $
$I = \dfrac{{{I_0}}}{2}{\cos ^2}\theta $
$\theta $ is the angle between ${P_1}$ and ${P_2}$
Note: In electromagnetic waves the filament is the superposition of wave trains and each has its own polarisation direction. Natural light is partial because the multiple scattering and the reflection. In polarised light circumstances of spatial orientation is defined.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main