Answer
Verified
113.4k+ views
Hint: We want to find the final position of image for that we must have the focal length of lens only then we can find the position of image. To find the focal length of a lens although we have two Plano-convex lenses, we have to find the focal length of a combination of these Lens. When we find combined focal length then simply we apply lens formula to find the distance of the image.
Complete step by step solution:
In the question the given data is
Radius of curvature of both lanes $14cm$ and refractive index of lens 1is ${n_1} = 1.5$ and lens 2 is ${n_2} = 1.2$
Step 1:We have to find the individual focal length of both lenses by using formula.
$\dfrac{1}{f} = \left( {n - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$ ....................... (1)
Where $n \Rightarrow $ refractive index of lens
And ${R_1} \Rightarrow $ radius of curvature of first surface of lens
${R_2} \Rightarrow $ Radius of curvature of second surface of lens
$f \Rightarrow $ Focal length of lens
So we apply this formula for the first lens. For first lens
Refractive index ${n_1} = 1.5$
${R_1} = 14cm$
${R_2} = \infty $ Because second surface is plane in first lens
Apply formula from eq (1)
$ \Rightarrow \dfrac{1}{{{f_1}}} = \left( {1.5 - 1} \right)\left( {\dfrac{1}{{14}} - \dfrac{1}{\infty }} \right)$
$ \Rightarrow \dfrac{1}{{{f_1}}} = \left( {1.5 - 1} \right)\left( {\dfrac{1}{{14}}} \right)$
Solving it
$ \Rightarrow \dfrac{1}{{{f_1}}} = \dfrac{1}{{28}}$
So the focal length of lens 1
$\therefore {f_1} = 28cm$
Similarly we find the focal length of the second lens. For lens 2
Refractive index is ${n_2} = 1.2$
${R_1} = \infty $
${R_2} = - 14cm$ Because ${R_2}$ is in left side of optical canter (by sign convention we take left side distance negative in sign and take right side distance positive )
Apply formula from eq(1)
$ \Rightarrow \dfrac{1}{{{f_2}}} = \left( {1.2 - 1} \right)\left( {\dfrac{1}{\infty } - \dfrac{1}{{ - 14}}} \right)$
$ \Rightarrow \dfrac{1}{{{f_2}}} = \left( {1.2 - 1} \right)\left( {\dfrac{1}{{14}}} \right)$
Solving it
$ \Rightarrow \dfrac{1}{{{f_2}}} = \dfrac{1}{{70}}$
So focal length of lens 2
${f_2} = 70cm$
Step 2: In this step we find the focal length of combination of both lenses
We have formula for find equivalent focal length of two lenses is given as
$\dfrac{1}{{{f_{eq}}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}$
Using this formula
$ \Rightarrow \dfrac{1}{{{f_{eq}}}} = \dfrac{1}{{28}} + \dfrac{1}{{70}}$
Solving it
$ \Rightarrow \dfrac{1}{{{f_{eq}}}} = \dfrac{1}{{20}}$
So the equivalent focal length of these lenses
$\therefore {f_{eq}} = 20cm$
Step 3
Now we can find the distance of image by using lens formula
$\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}$
Where $u \Rightarrow $ Distance of object
And $v \Rightarrow $ Distance of image
$f \Rightarrow $ Focal length of lens
In question it is given $u = - 40cm$
$f = 20cm$
Simply apply above formula
$ \Rightarrow \dfrac{1}{{20}} = \dfrac{1}{v} - \dfrac{1}{{ - 40}}$
Rearranging it
$ \Rightarrow \dfrac{1}{v} = \dfrac{1}{{20}} - \dfrac{1}{{40}}$
On solving
$ \Rightarrow \dfrac{1}{v} = \dfrac{1}{{40}}$
So the distance of image is
$\therefore v = 40cm$ Right side of lens.
Option (B) is correct here.
Note: Some time we get confuse why some time some distances take positive and some take negative so the answer is we use sign convention to understand sign convention see the diagram
We take all distances positive in the right side of the lens and take negative in the left direction.Similarly, in positive y direction take positive height and in negative y direction take negative.
Complete step by step solution:
In the question the given data is
Radius of curvature of both lanes $14cm$ and refractive index of lens 1is ${n_1} = 1.5$ and lens 2 is ${n_2} = 1.2$
Step 1:We have to find the individual focal length of both lenses by using formula.
$\dfrac{1}{f} = \left( {n - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$ ....................... (1)
Where $n \Rightarrow $ refractive index of lens
And ${R_1} \Rightarrow $ radius of curvature of first surface of lens
${R_2} \Rightarrow $ Radius of curvature of second surface of lens
$f \Rightarrow $ Focal length of lens
So we apply this formula for the first lens. For first lens
Refractive index ${n_1} = 1.5$
${R_1} = 14cm$
${R_2} = \infty $ Because second surface is plane in first lens
Apply formula from eq (1)
$ \Rightarrow \dfrac{1}{{{f_1}}} = \left( {1.5 - 1} \right)\left( {\dfrac{1}{{14}} - \dfrac{1}{\infty }} \right)$
$ \Rightarrow \dfrac{1}{{{f_1}}} = \left( {1.5 - 1} \right)\left( {\dfrac{1}{{14}}} \right)$
Solving it
$ \Rightarrow \dfrac{1}{{{f_1}}} = \dfrac{1}{{28}}$
So the focal length of lens 1
$\therefore {f_1} = 28cm$
Similarly we find the focal length of the second lens. For lens 2
Refractive index is ${n_2} = 1.2$
${R_1} = \infty $
${R_2} = - 14cm$ Because ${R_2}$ is in left side of optical canter (by sign convention we take left side distance negative in sign and take right side distance positive )
Apply formula from eq(1)
$ \Rightarrow \dfrac{1}{{{f_2}}} = \left( {1.2 - 1} \right)\left( {\dfrac{1}{\infty } - \dfrac{1}{{ - 14}}} \right)$
$ \Rightarrow \dfrac{1}{{{f_2}}} = \left( {1.2 - 1} \right)\left( {\dfrac{1}{{14}}} \right)$
Solving it
$ \Rightarrow \dfrac{1}{{{f_2}}} = \dfrac{1}{{70}}$
So focal length of lens 2
${f_2} = 70cm$
Step 2: In this step we find the focal length of combination of both lenses
We have formula for find equivalent focal length of two lenses is given as
$\dfrac{1}{{{f_{eq}}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}$
Using this formula
$ \Rightarrow \dfrac{1}{{{f_{eq}}}} = \dfrac{1}{{28}} + \dfrac{1}{{70}}$
Solving it
$ \Rightarrow \dfrac{1}{{{f_{eq}}}} = \dfrac{1}{{20}}$
So the equivalent focal length of these lenses
$\therefore {f_{eq}} = 20cm$
Step 3
Now we can find the distance of image by using lens formula
$\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}$
Where $u \Rightarrow $ Distance of object
And $v \Rightarrow $ Distance of image
$f \Rightarrow $ Focal length of lens
In question it is given $u = - 40cm$
$f = 20cm$
Simply apply above formula
$ \Rightarrow \dfrac{1}{{20}} = \dfrac{1}{v} - \dfrac{1}{{ - 40}}$
Rearranging it
$ \Rightarrow \dfrac{1}{v} = \dfrac{1}{{20}} - \dfrac{1}{{40}}$
On solving
$ \Rightarrow \dfrac{1}{v} = \dfrac{1}{{40}}$
So the distance of image is
$\therefore v = 40cm$ Right side of lens.
Option (B) is correct here.
Note: Some time we get confuse why some time some distances take positive and some take negative so the answer is we use sign convention to understand sign convention see the diagram
We take all distances positive in the right side of the lens and take negative in the left direction.Similarly, in positive y direction take positive height and in negative y direction take negative.
Recently Updated Pages
Updated JEE Main Syllabus 2025 - Subject-wise Syllabus and More
JEE Main 2025 Exam Date: Check Important Dates and Schedule
JEE Main Admit Card 2025 Release Date and Time with Steps to Download
JEE Main 2025 City Intimation Slip: Downloading Link and Exam Centres
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking