A box contains cards numbered 3,5,7,9,……35,37. A card is drawn at random from the box. Find the probability that the number on the drawn card is a prime number.
Answer
Verified
511.5k+ views
Hint: Start with determining how many numbers are there in 3,5,7,9,……35,37 for total number of favorable outcomes. And also how many prime numbers it exhibits.
According to the question, the numbers on the cards represent 3,5,7,9,……35,37. It consists of all the odd numbers up to 37 except 1.
So, total number of cards $ = \dfrac{{37 - 3}}{2} + 1 = 17 + 1 = 18$
Therefore, the total number of possible outcomes $ = 18$
Now in these, the cards representing prime numbers will be of number 3,5,7,11,13,17,19,23,29,31,37. Thus, there are 18 of these cards.
Therefore the number of favorable outcomes $ = 11$.
Let $E$is the event representing the drawing of a prime numbered card. Then the probability is:
$
\Rightarrow P\left( E \right) = \dfrac{{{\text{No}}{\text{. of favorable outcomes}}}}{{{\text{Total number of possible outcomes}}}}, \\
\Rightarrow P\left( E \right) = \dfrac{{11}}{{18}}. \\
$
Thus, the required probability is $\dfrac{{11}}{{18}}$.
Note: Probability represents the chance of an event to occur. For example in above, the probability is $\dfrac{{11}}{{18}}$. This means that out of 18 trials of drawing the card, there is a chance that 11 of them comes out with a prime number.
According to the question, the numbers on the cards represent 3,5,7,9,……35,37. It consists of all the odd numbers up to 37 except 1.
So, total number of cards $ = \dfrac{{37 - 3}}{2} + 1 = 17 + 1 = 18$
Therefore, the total number of possible outcomes $ = 18$
Now in these, the cards representing prime numbers will be of number 3,5,7,11,13,17,19,23,29,31,37. Thus, there are 18 of these cards.
Therefore the number of favorable outcomes $ = 11$.
Let $E$is the event representing the drawing of a prime numbered card. Then the probability is:
$
\Rightarrow P\left( E \right) = \dfrac{{{\text{No}}{\text{. of favorable outcomes}}}}{{{\text{Total number of possible outcomes}}}}, \\
\Rightarrow P\left( E \right) = \dfrac{{11}}{{18}}. \\
$
Thus, the required probability is $\dfrac{{11}}{{18}}$.
Note: Probability represents the chance of an event to occur. For example in above, the probability is $\dfrac{{11}}{{18}}$. This means that out of 18 trials of drawing the card, there is a chance that 11 of them comes out with a prime number.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 Social Science: Engaging Questions & Answers for Success
Master Class 9 Maths: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Difference Between Plant Cell and Animal Cell
What is pollution? How many types of pollution? Define it
What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.