Answer
Verified
500.7k+ views
Hint: Speed of downstream is always greater than the speed of the upstream.
Given that,
Distance covered in upstream and in downstream is $ = 24km$
Speed of the boat in still water $ = 18km/hr$
Let the speed of the stream $ = xkm/hr$
Now,
Speed of the boat in upstream $ = $ speed of the boa in still water $ - $ speed of the stream
$
= 18km/hr - x km/hr \\
= (18 - x)km/hr \\
$
Speed of the boat in downstream $ = $ speed of the boat in still water $ + $ speed of the stream
$
= 18km/hr + x km/hr \\
= \left( {18 + x} \right)km/hr \\
$
We know that,
Time taken for the upstream $ = $ Time taken to cover downstream \[ + 1\]$
\dfrac{{{\text{Distance of upstream}}}}{{{\text{Speed of upstream}}}} = \dfrac{{{\text{Distance of downstream}}}}{{{\text{Speed of downstream}}}} + 1 \\
\\
\dfrac{{24}}{{18 - x}} = \dfrac{{24}}{{18 + x}} + 1 \\
\\
24\left( {18 + x} \right) = 24\left( {18 - x} \right) + \left( {18 - x} \right)\left( {18 + x} \right) \\
\\
432 + 24x = 432 - 24x + 324 - {x^2} \\
\\
24x + 24x = 324 - {x^2} \\
\\
{x^2} + 48x - 324 = 0 \\
$
By solving the quadratic equation, we get
$
{x^2} + 48x - 324 = 0 \\
{x^2} + 54x - 6x - 324 = 0 \\
\left( {x + 54} \right)\left( {x - 6} \right) = 0 \\
$
Thus, we have two values of $x$ i.e. $x = 6, - 54$
Therefore, the speed of the stream is $6km/hr$.
Note: In this type of problem the value of the speed of the stream cannot be negative. Hence, we neglect $x = - 54$.
Given that,
Distance covered in upstream and in downstream is $ = 24km$
Speed of the boat in still water $ = 18km/hr$
Let the speed of the stream $ = xkm/hr$
Now,
Speed of the boat in upstream $ = $ speed of the boa in still water $ - $ speed of the stream
$
= 18km/hr - x km/hr \\
= (18 - x)km/hr \\
$
Speed of the boat in downstream $ = $ speed of the boat in still water $ + $ speed of the stream
$
= 18km/hr + x km/hr \\
= \left( {18 + x} \right)km/hr \\
$
We know that,
Time taken for the upstream $ = $ Time taken to cover downstream \[ + 1\]$
\dfrac{{{\text{Distance of upstream}}}}{{{\text{Speed of upstream}}}} = \dfrac{{{\text{Distance of downstream}}}}{{{\text{Speed of downstream}}}} + 1 \\
\\
\dfrac{{24}}{{18 - x}} = \dfrac{{24}}{{18 + x}} + 1 \\
\\
24\left( {18 + x} \right) = 24\left( {18 - x} \right) + \left( {18 - x} \right)\left( {18 + x} \right) \\
\\
432 + 24x = 432 - 24x + 324 - {x^2} \\
\\
24x + 24x = 324 - {x^2} \\
\\
{x^2} + 48x - 324 = 0 \\
$
By solving the quadratic equation, we get
$
{x^2} + 48x - 324 = 0 \\
{x^2} + 54x - 6x - 324 = 0 \\
\left( {x + 54} \right)\left( {x - 6} \right) = 0 \\
$
Thus, we have two values of $x$ i.e. $x = 6, - 54$
Therefore, the speed of the stream is $6km/hr$.
Note: In this type of problem the value of the speed of the stream cannot be negative. Hence, we neglect $x = - 54$.
Recently Updated Pages
A parachutist is descending vertically and makes angles class 10 maths CBSE
A number x is selected at random from the numbers -class-10-maths-CBSE
A number is selected at random from 1 to 50 What is class 10 maths CBSE
A number is increased by 20 and the increased number class 10 maths CBSE
A moving train 66 m long overtakes another train 88 class 10 maths CBSE
A motorboat whose speed in still water is 18kmhr t-class-10-maths-CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Chahalgani means ATurkish noble under Iltutmish BSlaves class 10 social science CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
the Gond raja of Garha Katanga assumed the title of class 10 social science CBSE