Answer
Verified
449.4k+ views
Hint: We assume the velocity of the train as variable. We use the formula of $time=\dfrac{dis\tan ce}{speed}$ to find the two different types of time required for different speeds. We put the relation between times into a quadratic equation. We solve the equation to get the speed of the train.
Complete step by step answer:
Let the uniform speed of the train be x km/h. The train travels 360 km at that uniform speed.
We know the relation between time required, speed and the distance are $time=\dfrac{dis\tan ce}{speed}$.
We now try to find the time required by the train when it’s traveling 360 km with a speed of x km/h. let it be t hour.
So, the time required is $t=\dfrac{360}{x}$.
Now the given condition is if the speed had been 5 km/h more, it would have taken 1 hr less for the same journey.
This means if the speed had been $\left( x+5 \right)$ km/h, it would have taken 1 hr less which is $\left( t-1 \right)$ hour for the same journey.
We try to again express the time $\left( t-1 \right)$ according to the formula and get $t-1=\dfrac{360}{x+5}$.
We have two equations of two unknowns.
$\begin{align}
& t-1=\dfrac{360}{x+5} \\
& \Rightarrow \dfrac{360}{x}-1=\dfrac{360}{x+5} \\
& \Rightarrow \dfrac{360}{x}-\dfrac{360}{x+5}=1 \\
\end{align}$
We get the quadratic form and get $360\left( x+5 \right)-360x=x\left( x+5 \right)$.
The equation becomes ${{x}^{2}}+5x-1800=0$.
$\begin{align}
& {{x}^{2}}+5x-1800=0 \\
& \Rightarrow {{x}^{2}}+45x-40x-1800=0 \\
& \Rightarrow \left( x+45 \right)x-40\left( x+45 \right)=0 \\
& \Rightarrow \left( x+45 \right)\left( x-40 \right)=0 \\
\end{align}$
The solution of the factorisation is $x=40$. It can’t be -45 as it’s velocity.
Therefore, the speed of the train is 40 km/h.
Note: We also could have used the fixed distance value to find the relation which means $\left( t-1 \right)\left( x+5 \right)=360=tx$. The relation comes from the corollary formula of $time=\dfrac{dis\tan ce}{speed}$ which is $dis\tan ce=time\times speed$. The equation would have been given $\left( t-1 \right)\left( x+5 \right)=tx$.
Although the rest of the solution process would have been the same.
Complete step by step answer:
Let the uniform speed of the train be x km/h. The train travels 360 km at that uniform speed.
We know the relation between time required, speed and the distance are $time=\dfrac{dis\tan ce}{speed}$.
We now try to find the time required by the train when it’s traveling 360 km with a speed of x km/h. let it be t hour.
So, the time required is $t=\dfrac{360}{x}$.
Now the given condition is if the speed had been 5 km/h more, it would have taken 1 hr less for the same journey.
This means if the speed had been $\left( x+5 \right)$ km/h, it would have taken 1 hr less which is $\left( t-1 \right)$ hour for the same journey.
We try to again express the time $\left( t-1 \right)$ according to the formula and get $t-1=\dfrac{360}{x+5}$.
We have two equations of two unknowns.
$\begin{align}
& t-1=\dfrac{360}{x+5} \\
& \Rightarrow \dfrac{360}{x}-1=\dfrac{360}{x+5} \\
& \Rightarrow \dfrac{360}{x}-\dfrac{360}{x+5}=1 \\
\end{align}$
We get the quadratic form and get $360\left( x+5 \right)-360x=x\left( x+5 \right)$.
The equation becomes ${{x}^{2}}+5x-1800=0$.
$\begin{align}
& {{x}^{2}}+5x-1800=0 \\
& \Rightarrow {{x}^{2}}+45x-40x-1800=0 \\
& \Rightarrow \left( x+45 \right)x-40\left( x+45 \right)=0 \\
& \Rightarrow \left( x+45 \right)\left( x-40 \right)=0 \\
\end{align}$
The solution of the factorisation is $x=40$. It can’t be -45 as it’s velocity.
Therefore, the speed of the train is 40 km/h.
Note: We also could have used the fixed distance value to find the relation which means $\left( t-1 \right)\left( x+5 \right)=360=tx$. The relation comes from the corollary formula of $time=\dfrac{dis\tan ce}{speed}$ which is $dis\tan ce=time\times speed$. The equation would have been given $\left( t-1 \right)\left( x+5 \right)=tx$.
Although the rest of the solution process would have been the same.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE