
A trolly falling freely on an inclined plane as shown in the figure. The angle of string of pendulum with the ceiling of trolley is $\left( \alpha \right)$ equal to-

(A). ${\theta ^ \circ }$
(B). ${90^ \circ } - {\theta ^ \circ }$
(C). ${90^ \circ }$
(D). ${0^ \circ }$
Answer
529.4k+ views
- Hint: We will add the component of tension and component of weight and put it in the formula of force in order to solve this question. The formula for force is $F = ma$.
Complete step-by-step solution -
Let T be the tension acting on the trolley.
So, the component of tension along the inclined plane is $T\cos \alpha $.
If m is the mass of the system of trolley, then the component of weight along the inclined plane is $mg\sin \theta $.
As we know that the acceleration of the trolley is equal to the acceleration of the bob in the trolley as bob is in the equilibrium in the frame of the trolley.
So, the net force along the plane will be-
$
\Rightarrow F = ma \\
\\
\Rightarrow mg\sin \theta + T\cos \alpha = ma \\
$
For the free falling trolly on an inclined plane, acceleration $a = g\sin \theta $ along the plane.
So, putting this value of acceleration in the above formula, we get-
$
\Rightarrow mg\sin \theta + T\cos \alpha = ma \\
\\
\Rightarrow mg\sin \theta + T\cos \alpha = mg\sin \theta \\
$
Cancelling $mg\sin \theta $ from both the sides, we get-
$
\Rightarrow mg\sin \theta + T\cos \alpha = mg\sin \theta \\
\\
\Rightarrow T\cos \alpha = 0 \\
\\
\Rightarrow \cos \alpha = 0 \\
\\
\Rightarrow \alpha = {90^ \circ } \\
$
Hence, option C is the correct option.
Note: In physics, tension is depicted as the pulling force transmitted axially by the methods for a string, a cable, chain, or comparative one-dimensional continuous object, or by each finish of a bar, truss member, or comparable three-dimensional object; tension may likewise be portrayed as the action-reaction pair of forces acting at each finish of said elements.
Complete step-by-step solution -
Let T be the tension acting on the trolley.
So, the component of tension along the inclined plane is $T\cos \alpha $.
If m is the mass of the system of trolley, then the component of weight along the inclined plane is $mg\sin \theta $.
As we know that the acceleration of the trolley is equal to the acceleration of the bob in the trolley as bob is in the equilibrium in the frame of the trolley.
So, the net force along the plane will be-
$
\Rightarrow F = ma \\
\\
\Rightarrow mg\sin \theta + T\cos \alpha = ma \\
$
For the free falling trolly on an inclined plane, acceleration $a = g\sin \theta $ along the plane.
So, putting this value of acceleration in the above formula, we get-
$
\Rightarrow mg\sin \theta + T\cos \alpha = ma \\
\\
\Rightarrow mg\sin \theta + T\cos \alpha = mg\sin \theta \\
$
Cancelling $mg\sin \theta $ from both the sides, we get-
$
\Rightarrow mg\sin \theta + T\cos \alpha = mg\sin \theta \\
\\
\Rightarrow T\cos \alpha = 0 \\
\\
\Rightarrow \cos \alpha = 0 \\
\\
\Rightarrow \alpha = {90^ \circ } \\
$
Hence, option C is the correct option.
Note: In physics, tension is depicted as the pulling force transmitted axially by the methods for a string, a cable, chain, or comparative one-dimensional continuous object, or by each finish of a bar, truss member, or comparable three-dimensional object; tension may likewise be portrayed as the action-reaction pair of forces acting at each finish of said elements.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Derive an expression for maximum speed of a car on class 11 physics JEE_Main

Understanding Elastic Collisions in Two Dimensions

Class 11 JEE Main Physics Mock Test 2025

Other Pages
NCERT Solutions For Class 11 Physics Chapter 10 Thermal Properties of Matter (2025-26)

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

Understanding Collisions: Types and Examples for Students

Define thermal expansion for alpha beta and gamma A class 11 physics JEE_Main

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

Valentine Week 2026 List | Valentine Week Days, Dates & Meaning

